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PREFACE

THE author has aimed to make this treatment of algebra
so simple that the pupil can begin the book to advantage
immediately upon completing an ordinary course in arith-
.metic; and, at the same time, so scientific that he will
have nothing to unlearn as he advances in the study of
mathematics. Great care has been taken to develop the
- subject logically, yet the immaturity of the pupil has been
constantly kept in mind, and every legitimate aid has been
given him. Simplicity has been attained not by using
inexact statements and mechanical methods, but by avoid-
ing many of the outgrown phrases of traditional algebra,
by giving demonstrations and explanations in full, and by
making fundamental concepts clear and tangible. An
introductory/thapter explains the meaning and advantages
of the literlinotation, and illustrates the use of the equa-
tion in solviél arithmetic problems. In Chapter II real
numbers are first considered, and are defined as multiples
of the quality-units, +1 and —1, and the pupil is drilled
in the use of particular real numbers before he is required
to represent general real numbers by letters.

General principles are first illustrated by particular ex-
amples, the study of which prepares the pupil to grasp

the meaning of the formal statement of the principles, and
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makes it less likely that he will memorize without com-
prehending the demonstrations which follow. With this
arrangement the reproduction of the demonstrations may
be left for the review; but the pupil should become
familiar with each principle and definition before a new
one is considered. 'When the demonstrations are not re-
produced, it is recommended that the proofs be carefully
read and discussed in class, so that the pupil may be
fully convinced that the principles are true. He should
then be required to state the authorities for each step in
the proof when the steps are given.

. The identity and the equation are sharply distinguished.
Two groups of principles are stated, the first for proving
the identity, the second for solving the equation.

The need of the principles of the equivalency of equa-
tions and systems is clearly shown. These principles are
fully illustrated and proved, and upon them are based the
methods of solving equations and systems of equations.
In the chapter on factoring, the formation of equations
with given roots serves as an introduction to the converse
problem of finding the roots of a given quadratic or higher
equation, and to the method of making factoring funda-
mental in the study and solution of quadratic and higher
equations and systems.

The graph is used to illustrate the meaning of equations
in two unknowns, of systems of equations and of equivalent
systems; it also serves to make clear some of the general
properties of equations in one unknown.

The theory of limits is given as briefly as is thought to
be consistent with clearness. It is used in proving the
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laws of incommensurable numbers and in evaluating ex-
pressions which assume the indeterminate form 0/0.

The treatment of imaginary numbers affords a good
illustration of the advantages derived from regarding alge~
braic numbers as arithmetic multiples of quality-units.
When a pupil understands that the quality-units v —1
and —V/—1 include the idea of the arithmetic one and
that of oppositeness to each other, that (v —1)*= —1, and
(V—=1)*= 41, he has mastered all that is new in imagi-
naries, and can then state the general laws for products
and quotients of imaginary and real numbers (§§ 274, 276).
" This concept makes for simplicity, for it enables us to
express general laws which are true for real, imaginary,
and complex numbers, and it clearly separates the problem
of finding the arithmetical value of a result from that of
finding its quality. Graphic representations are used to
illustrate the meaning and reality of imaginary and com-
plex numbers.

Special attention is invited to the brevity and complete-
ness of the demonstrations of the principles of proportion,
the early introduction of the remainder theorem, the use
of type-forms in factoring, and the treatment of fractional
and irrational equations.

The methods of working examples have been chosen for .
their simplicity and the scope of their application. The
problems are varied, interesting, well graded, and not so
difficult as to discourage the beginner. Many exercises
contain easy examples which, especially in the review,
should be used for oral work. Suggestions as to the
method of attack are freely given; rules are stated only
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for the most difficult operations, but not until after these
have been illustrated by particular examples.

The author has sought to treat each subject with suffi-
cient fulness to meet the college entrance requirements,
and more subjects are given than are ordinarily considered
as a part of elementary algebra.

The author is indebted to many teachers for valuable
suggestions, but especially to his assistant, Mr. C. D. Kings-
ley, who has carefully read all the manuscript and most
of the proof sheets. )

JAMES M. TAYLOR.

CoLGATE UNIVERSITY,
June, 1900,
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ELEMENTS OF ALGEBRA

—_——

CHAPTER 1
INTRODUCTION

1. Arithmetic number. In Arithmetic we have seen that
by taking a group of ones we can obtain any whole number;
and that by dividing one into equal parts, and taking a
group of these parts, we can obtain any fractional number.

Hence, the primary unit of arithmetic number is one, 1.

A whole number, or an integer, is one or an aggregate
of ones.

A fractional unit is one of the equal parts of one.

A fractional number is a fractional unit, or any aggregate
of fractional units which does not equal a whole number.

In writing fractions we offen use the sign /; thus,
3/2 denotes §.

The numbers defined above answer the single question,
‘How many ?’ and are called arithmetic, or absolute, numbers.

Arithmetic numbers are used to express how many times one quan-
tity contains another of the same kind. By diminishing indefinitely

the fractional unit we can obtain a series of numbers in which the
difference between successive numbers will be as small as we please.

2. A numeral is any symbol which is used to denote a
particular number, and which is never used to denote any
other number. The more common numerals are the Arabio
figures, 1, 2, 3, etc, and the Roman letters, I, V, X, ete.

1



2 ELEMENTS OF ALGEBRA

By the use of numerals, as we have seen in Arithmetic, we can
state only particular problems. To state and solve general problems,
and to investigate the general properties of numbers, mathematicians
have invented the literal notation.

3. Letters denoting numbers.— An important step in en-
larging the notation of number is the use of a letter, as
a, b, @, or y, to denote any number whatever or an unknown
number.

E.g., just as heretofore we have spoken of 5 dollars, of 8} miles,
etc., so sometimes we shall speak of a dollars, meaning any number
whatever of dollars; of z miles, meaning any number of miles or an
unknown number of miles, etc.

Just as when we say the number 4, or simply 4, we mean
the number denoted by the figure 4; so when for brevity we
say the number q, or simply a, we mean the number denoted
by the letter a.

The following simple examples will illustrate how letters
are used to denote any number whatever in the statement of
general arithmetic problems.

Ex. 1. If one merchant has 50 dollars and another has 25 dollars,
the two together have 650 + 26 dollars. If one merchant has m dollars
and another has n dollars, the two together have m + n dollars.

Here m or n denotes any whole or fractional number ; and m + n
denotes the sum of these numbers.

Ex. 2. If a drover buys 6 horses at 50 dollars each, he pays 50 x 6.
dollars for the horses. If a drover buys y horses at  dollars apiece,
he pays ¢ x y dollars for the horses.

Here y denotes any whole number, z any whole or fractional num-
ber, and x x y their product.

Ex. 3. If 60 dollars is divided equally among 5 boys, each boy re-
ceives 60 = 5 dollars. If x dollars is divided equally among n boys,
each boy receives z <+ n dollars.

Ex. 4. I. ' men earn n dollars in one day, each man earns n + m
dollars in one day, and therefore z men will earn n + m x z dollars in
one day.
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In these examples the reasoning is the same whether the
numbers are denoted by figures or by letters.

When letters are used in its statement, each problem is a
general problem, and includes an unlimited number of par-
ticular problems.

4, The following signs, or symbols, of operation, with
which, as has been assumed, the pupil is already familiar,
are common to all branches of mathematics.

The sign of addition, +, read ‘plus,’ indicates that the
number after the sign is to be added to the number before it.

E.g.,3 +4 means that4 is to be added to 3. a4 b, read ‘a
plus b,’ means that the number denoted by b is to be added to the num-
ber denoted by a ; or, more briefly, it means that b is to be added to a.

The sign of subtraction, —, read ‘minus,’ indicates that
the number after the sign is to be subtracted from the num-
ber before it._

E.g., a+b—c, read ‘a plus b minus ¢,” means that b is to be
added to g, and then ¢ subtracted from this sum.

The sign of multiplication, X, or a point above the line,
read ‘multiplied by, or ‘into, indicates that the number
before it'is to be multiplied by the number after it. ‘

The sign of multiplication is usually omitted between
two letters or a figure and a letter.

E.g., 2ab, read ‘2ab,” means 2x a xb; Tabe, read *7 abc,’
means 7-a-b-c. The sxgn of multiplication cannot be omitted
between two factors when both are denoted by figures; for by the
notation of Ax.'ithmetic, 54 means 50 + 4, not 5 x 4.

The sign of division, +, read ¢ divided by,’ or ¢ by,’ indicates,
that the number before, lt is to be divided by the number
after it.

E.g.,a+bxc—+d,read ‘a by b into ¢ by d,’ denotes that a is to
be divided by b, the result multiplied by ¢, and then this result
divided by d.
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Observe that in a series of additions and subtractions, or
in a series of multiplications and divisions, the operations are
to be performed from left to right.

Exercise 1.

1. If a boy has 5 marbles and wins 4 more, how many
marbles has he? If he has a marbles and wins b more,
how many marbles has he ?

2. One part of 25 is 7. What is the other part? One
part of 25 is n. What is the other part ? One part of the
number m is n. What is the other part ?

8. The difference of two numbers is 6, and the smaller
is 12. 'What is the greater? The difference of two num-
bers is n, and the smaller is . 'What is the greater ?

4. How old will a man be in 6 years, if his present age
is 36 years? How old will a man be in ¢ years, if his
present age is x years ?

5. In 10 years a man will be 50 years old. Wha.t is his
present age? TIn b years a man will be m years old. What
is his present age ?

6. The length of a room is feet, and its width is &
feet less than its length. What is its width ?

7. One number is 2, and a second number is y times as
great. What is the second number ?

8. One numbe{'ﬂae, is atimes as great as a second num-
ber. What is the second number ?°

9. The number which contains 4 units and 5 tens is
10 x 5+ 4. W{ite the number which contains & units and
y tens.

10. Write a number containing # units, y tens, and »
hundreds.
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11. Of three consecutive whole numbers 6 is the second;
what are the first and the third ? If the second is m, what
are the first and the third ?

12. Of three consecutive whole numbers 7 is the first;
what are the second and the third ? If the first whole
number is , what are the second and the third ?

13. Of three consecutive even integers, 8 is the third;
what are the first and the second ? If the third integer is
m, what are the first and the second ?

14. If a goat costs x dollars, and a cow costs 4 times as
much as a goat, and a horse costs 3 times as much as a cow,
how much does a horse cost ?

15. In example 14, how much do a goat, a cow, and a
horse together cost ?

16. A is & years old, B is 17 years older than A, and C’s
age equals the sum of B’s age and A’s age. How old is C ?

17. If m sheep cost # dollars, and n cows cost y dollars,
what would ¢ sheep and b cows cost ?

18. A travelled a hours at the rate of m miles an hour,
and B travelled b hours at the rate of y miles an hour. How
many miles did A and B together travel ?

19. A rides his bicycle » yards; the circumference of
each wheel is m feet. How many revolutions does each
wheel make in going this distance ?

5. A mathematical expression is any symbol or combina-
tion of symbols which denotes a number.

If all the symbols of number in an expression are
numerals, the expression is called a numeral expression.

An expression which involves one or more letters is
. called a literal expression.

The number denoted by a numeral expression is a par-
ticular, or a fized, number. For sake of distinction, the
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number which is denoted by a literal expression is called a
general, or an arbitrary, number.

By the value of an expression we mean the number de-
noted by it.

E.g.,4,5—3,and 7 x 5+ 4 x 2 are numeral expressions, and each

denotes a particular, or fixed, number; while a, a+4, and ax+b—c+y
are literal expressions, and each denotes a general number.

6. An axiom is a truth so obvious that it may be taken
for granted.

Two numbers are said to be equal when they bear the
same relation to the same unit.

E.g., 4 x 3 and 6 X 2 are equal numbers, since each is 12 times 1.
4 and § are equal numbers, since each is 6 times §.

The axioms concerning equal numbers, which are most
frequently used in Algebra, as in Arithmetic, are the fol-
lowing : ’

1. Any number i3 equal to itself.

2. Any number is equal to the sum of all its parts.

3. If each of two numbers is equal to the same number,
they are equal to each other.

4. If equal numbers are added to equal numbers, the sums
are equal.

5. If equal numbers are subtracted from equal numbers,
the remainders are equal.

6. If equal numbers are multiplied by equal numbers, the
products are equal.

7. If equal numbers are divided by equal numbers, except
zero, the quotients are equal.

Eg,12=8+4,and12+4=(84+4) + 4.
Again, 2 X 0 =5 x 0; but we cannot divide by 0 and say that 2 =5.

8. The value of a mathematical expression s not changed
when, for any number in it, an equal number is substituted.
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T. The following signs of relation are common to all
branches of mathematics:

The sign of equality, =, read ‘is equal to, is placed be
tween two expressions to indicate that they denote equal
numbers.

The sign of inequality, >, read ‘i3 greater than,’ is placed
between two expressions to indicate that the first denotes a
greater number than the second. The sign < is read ‘1s
less than.’

E.g., 4+ 8>10isread ‘4 plus 8 is greater than 10°;
and 7—2< 12 is read ‘7 minus 2 i3 less than 12.’

Observe that in each case the small end of the symbol is toward
the less number.

The sign =+, read ‘is not equal fo, is used in stating
that two numbers are unequal, without indicating which is
the greater. Thus, a + b is read ‘a is not equal to b.

8. The signs of grouping are the parentheses (), the
brackets [ ], the braces § }, and the winculum —.

Each of these symbols indicates that the expression in-
cluded by it is ¢o be treated as a whole.

E.g., the expression 12 — (3 + 5) denotes that the sum 3 4 5 is to
be subtracted from 12 ; that is,

12-(8+6)=12—-8=4.

The expression [32 — (4 + 6)+ 6]+ 3 denotes that one-fifth of the
sum 4 4 6 is to be subtracted from 32, and the remainder divided by
3; that is,

[32—(4+6)+56]+3=[82-2]+38=10.

‘When one sign of grouping is used within another, to avoid ambi-

guity different forms must be used as above.

9. Classification of expressions. A term is any expression
in which the symbols of number are not connected by the
sign + or —; a4 xX5+2or3ab+e.
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Hence the signs x and + indicate operations within a
term, and the parts of an expression which are connected
by the sign + or — are its terms.

E.g., each of the expressions 5, a, and b + a is & term.
The expression 2ax +3b + ¢ consists of two terms, 2 ax and
3b+ec :

In this definition of a term an expression within a sign of
grouping must be considered as a single symbol of number.
Hence a factor or a divisor in a term can itself consist of
two or more terms.

E.g., the expression (a + b)(c+d) is a term in which each of
the factors, ¢ 4 b and ¢ + d, consists of two terms.

A moncmial is an expression of one term; as 4, 6y, or
T(a+ b))+ (z+ ).

A polynomial is an expression of two or more terms; as
44 Tora+3xy+T70.

A polynomial of two terms is called a binomial,

A polynomial of three terms is called a trinomial.

Observe that all operations within each of two terms
must be performed before performing the operation between
them.

E.g., the binomial 10 — (4 + 2)(7 — 8) + (6 + 2) denotes that 4 + 2
is to be multiplied by 7 — 8, this product divided by 6 + 2, and the
resulting quotient subtracted from 10,

Exercise 2.

Express in its simplest form the number denoted by each
of the following numeral expressions:

1. 14+ (T—4). 5. 18 — (6 —2)3.
2. 18—(12-1). 6. (6+9)+5.
3. 6+2)—(7-3). 7. 16 —(1—1)+3.

4. (3+8)3. 8. 22—-(18—6)+4.

-
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9. 12+[4—(6—-3)]  11. 19—-[2+4)—(5-3)].
10. 18—[8—(4+2)].  12. 22—[23— (7T —4)] + 5.

13. How many terms in each of the expressions found in
examples 1 to 12 inclusive ?

14. Find the sum of 52 and 7.
Justas 6+ 7=12,80 6z 4+ Tx=122.

Reduce each of the following expressions to its simplest
form:

16. 22+42 17. 82 +4+4xz—6x 19, x4 i+ fe
16. 5¢+T7a. 18. 9x—3x+ 22 20, §at+ja—}a.

10, An equality is the statement that two expressions
denote the same number. The expression to the left of the
sign of equality is called the first member of the equality,
and the expression to the right of this sign is called the
second member.

E.g., (64 8)9 =72 is an equality ; of which (6 + 8)9 is the first
member and 72 is the second member.

11. Zero is the number obtained by subtracting any num-
ber from itself ; that is, zero is defined by the equality

a—a=0. @

12. To find the value of a given literal expression when
each of its letters has some particular value, we substitute
for each letter its particular value, and simplify the result-
ing expression.

Ex. Find the value of the expression (z +y)z +(a — ), when
2=6,y=8,2=4,a=9,b=2. ° )

Substituting, 8 for z, 8 for y, 4 for 2, 9 for a, and 2 for b, in the
given expression, we obtain

@+y)z+@—b)=6@+3)x4+(9—2) Ie))
=36+ 1. @
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In the work above we have three equalities; by axiom 8, the first
expression is equal to the second and the second is equal to the third ;
hence, by axiom 3, the first is equal to the third.

13. In working examples the student should give heed to
the following suggestions:

1. Too much importance cannot be attached to neatness
of style and arrangement. Neatness is in itself conducive
to accuracy.

2. It should be clearly brought out how each result fol-
lows from the one before it; for this purpose it will some-
times be advisable to add short verbal explanations. ,

3. Unless the members are very short the signs of equal-
ity in the steps of the work should be placed one under the

other.
Exercise 3.

Find the value of each of the following expressions when
a=5,b=3 ¢c=4, 2=6:

1. a+b. 6. (a+bd)x. 11. 2+ (a— c).

2. a—>b. 7. (@ —b)c. 12. (a+d)(c+ =).
3. at+b—ec 8. (a+d)+a 13. (a—b)(x—c).
4. abe. 9. (@a—b)+=2 14. [2—(d+1)]a.
5. ab-+c. 10. z+(a+c¢). 15 [z+(a—c)]+a

18. [8b—(x—a)]+c. 18. (9—a)(2b—c)(2x—3D).
17. Ba—2b)+(x—0b). 19. Bx—4c)(3b—2c)+(v—oc).
20. [2a—(Bb—2¢)]+[(Bc—3b)(2a—3b)].

21. [Bx—2(a—b)]+[(2x—3b)(a—c)].
22. (22—3b)(4a—3x)+(Bx—3c—b).

14, A proof is a course of reasoning by which the truth
of a statement is made clear, or is established.
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16, Identical expressions. Two numeral expressions which
denote the same number or any two expressions which de-
note equal numbers for all values of their letters are called
identical expressions.

E.g., the numeral expressions 36 +~ 4 and 13 — 4 are identical, for
each denotes the number 9.

Again, the literal expressions 3z 4+ 7 and 6 x + 4 z are identical,
for each denotes the general number 10 z.

To prove that two expressions are identical, we reduce one
to the form of the other, or we reduce both to the same form.

Ex. Prove that the expressions 7z + 3z + 22 and 14z — 2z are
identical.

T7x+4+8x+ 2z denotes 12z, and 14 2 — 2z denotes 12 z; hence,
by definition, the two expressions are identical.

An equality whose members are identical expressions is
called an identity.

The sign of identity, =, read ‘is identical with,’ is often
used instead of the sign = in writing a literal identity, i.e.,
one whose members involve one or more letters.

Eg., 9+6="5x 3, NG))
or ' 3z+Tz=82+ 22, @)
is an identity, (1) being numeral and (2) being literal.

Any equality which involves only numerals is an identity.

The sign = points out the fact that equality (2) is an identity.

The pupil should now prove the identities in Exercise 4.

16, Letters denoting unknowns. Any problem involves
one or more numbers whose values are given, and one or
more numbers whose values are to be found. Numbers given
are called knowns, numbers to be found are called unknowns.
An unknown is usually denoted by one of the last letters
of the alphabet; as x, y, .

The following simple problems illustrate the advantage of
denoting an unknown by a letter.

Prob. 1. The sum of two numbers is 80, and the greater is 3 times the
less. Find the numbers.
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Let 2 = the less number;
then, since the greater is three times the less,
' 3 z = the greater number.
Hence theirsum =z 4+ 3z =4=z.

Therefore, by the conditions of the problem, we have

42=80. (¢))
Divide by 4, 2 = 20, the less number.
Multiply by 3, 8 z = 60, the greater number.

Observe that the numbers 20 and 60 satisfy the conditions of the
problem ; that is, 20 4 60 = 80, and 60 =20 x 8.

Prob. 2. A farmer bought a horse, a cow, and a goat ; the horse cost
3 times as much as the cow, and the cow 4 times as much as the goat,
and all three together cost 256 dollars. What was the cost of each ?

Let 2 = the number of dollars the goat cost ;
then 4z = the number of dollars the cow cost,
and 12 z = the number of dollars the horse cost.

Hence the number of dollars all three cost
=z +4x+122=17z.

Therefore, by the conditions of the problem, we have

17 2 = 256. @)
Divide by 17, z =15,
Multiply by 4, 4z = 60.
Multiply by 3, 12 z = 180.

Hence the goat cost $15, the cow $60, and the horse $180.

17. Equations. Any equality which is not an identity is
called an equation, as (1) or (2) in § 16.

A value of « in an equation in # is any number which
when substituted for # makes the equation an identity.

An equation in one unknown as « restricts « to one value
or to a definite number of values.
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18. The following principles, which are proved in Chap-
ter VII, are used in finding. the values of the unknown in
an equation:

(i) If the same number is added to or subtracted from both
members of an equation, the unknown has the same values in
the derived equation as in the given one.

(ii) If both members of an equation are multiplied or divided
by the same known number (except zero), the unknown has the
same values in the derived equation as in the given one.

Ex. 1. Find the value of z in the equation
224+ 5=11. (¢))]

Subtracting 6 from each member, we remove all the known terms
from the first member, Aa.nd obtain

22=86. @)
Dividing each member by 2, we obtain
z=3. RG]

By principle (i),  has the same value in (2) as in (1); and by (ii),
z has the same value in (3) as in (2).
Hence 3 is the one and only value of z in equation (1).

Ex. 2. Find the value of z in the equation

4x—-2=z+4. )
Add 2, 4x=2x+86. 2)
Subtract z, 8z=@. 3)
Divide by 8, z=2. ©))

By principle (i), z has the same value in (2) as in (1), and the
same in (3) as in (2); by (ii), # has the same value in (4) as in (3).
Hence 2 is the one and only value of z in (1).

Check - Putting 2 for z in (1), we obtain the identity

4x2-2=2+4.

Hence 2 is a value of z in (1).
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3. Find the value of z in the equation
tz—%z=14 @)

To clear (1) of fractions, we multiply both its members by 8,
t.e., by the least common multiple of its denominators.

122—-10x=7, or 22z=1. @)

Divide by 2, z=1 ®

By (ii), # has the same values in (2) as in (1), and the same in
(3).as in (2); hence } is the one and only value of z in (1).

The foregoing examples illustrate the method of finding
the value of the unknown in a simple equation.

Exercise b5.

Find the value of = in each of the following equations:

1. 32— T7=2z+3. 11. 5z—2=3z+44.

2. 3z+4+4=x+10. 12. Te—9=174+22.

3. dx44=2+4T7. 13. §x—4=5—}u.

4. Te+5=x+ 23. 14. $2—-3=T— 1}

5. 8x="5x+442. 156. jz—4=}—}=

6. 6x—b=4xz+41. 16. §x—}=§— 1=

7. 182 —-7=43 —-Tx. 17. Tx+21=45—-5z.

8. bx—T=3x+1. 18. z+§=H — =

9. 192—-11=1546=. 19. je4+l1=3}x+4

10. 32415 =2+ 25. 20. Hrx+i=rAr+4d

19, Problems solved by equations. Read the problem care-
fully to find out exactly what it means; then state in

algebraic symbols just what it says.

To do this, let # denote the unknown number; or, if
there are two or more unknown numbers, let # or some
multiple of = denote one of them, and then express each of
the others in terms of x.
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By an equation express the condition which the problem
imposes on .
Then find the value of z in this equation.

Exercise 6.

- 1. A line 30 inches long is divided into two parts, one
of which is double the other. How long are the parts ?
Let 2z = the number of inches in the second part ;
then 22 = the number of inches in the first part.

Hence the number of inches in the two parts =2z + z = 3z.
Therefore, by the conditions of the problem, we have

3z = 30.
Divide by 3, 2 = 10, number in second part.
Multiply by 2, 2 = 20, number in first part.

2. A, B, and C together have $90. B has twice as
much as A, and C has as much as A and B together. How
much has each ?

Let z = the number of dollars A has;
then 2 x = the number of dollars B has ;
hence 8 = the number of dollars C has.

S+ 22+ 32=090.

8. The sum of the ages of A and B is 67 years, and A
is 17 years older than B. 'What is the age of each?
Ans. 42 and 25 years.

4. Three men, A, B, and C, trade in company and gain
$ 600, of which A is to have 3 times as much as B, and C
as much as A and B together. What is the share of each ?

Let = = the number of dollars B is to have, etc.

8. A farmer bought 3 cows for $ 180, and the prices
paid were as the numbers 1, 2, and 3. What was the cost
of each ?
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Let 2z = the number of dollars paid for the first ;
then 2 z = the number of dollars paid for the second,
and 8z = the number of dollars paid for the third.

6. Divide 500 into two parts which are as the numbers
1 and 4.

7. What number is that whose double exceeds its half
by 27?

8. Divide $ 575 between A and B so that A may receive
$ 75 more than B.

Let 2 = the number of dollars B receives ;
then z + 76 = the number of dollars A receives ;
hence 2z + 76 = b76. (¢))

9. Divide 105 into two parts whose difference is 45.

10. What number is that to which if 40 is added the
sum will be 3 times the original number ?

11. Divide $84 among A, B, and C, so that B shall
have $ 13 more than A, and C $ 16 more than B. -

12. Three men, A, B, and C, contribute to an enterprise
$2400. B put in twice as much as A, and C put in as much
as A and B together. How much did each contribute ?

13. Find two numbers whose difference is 10, and one of
which is 3 times the other.

14. If two men, 150 miles apart, travel toward each -
other, one at the rate of 2, miles an hour, and the other at
the rate of 3 miles an hour, in how many hours will they
meet ?

15. A horse, carriage, and harness together are worth
$625. The horse is worth- 8 times as much as the harness,
and the carriage is worth $ 125 more than the harness.
Find the value of each. = Ans. $400, $175, and § 50.
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16. A man bought a cow, a sheep, and a hog for $80;
the cow cost $ 32 more than the sheep, and the sheep $ 6
more than the hog. Find the price of each.

Ans. $ 50, $ 18, $12.

17. The sum of $6000 was divided among A, B, C,
and D; B received twice as much as A, C as much as A
and B together, and D as much as A, B, and C together.
How much did each receive ?

Ans. $ 500, $ 1000, $ 1500, $ 3000.

18. A man has two sons and one daughter. He wishes
to divide $ 12,000 among them so that the younger son
shall have twice as much as the daughter, and the older
son as much as both the other children. How much must
he give to each ?

19. Divide 90 into five parts so that the second shall be
5 times the first, the third shall be £ of the first and second,
the fourth shall be } of the first, second, and third, and the
fifth shall be 2 times the sum of the other four.

20. A, B, and C enter into partnership to do business.
A furnishes 5 times as much capital as B, and C furnishes
4 as much as A and B together. They all together furnish
'$18,900. How much does each furnish ?

21. A gentleman, dying, bequeathed his property of

$ 21,840 as follows: to his son 2 times as much as to his
daughter, and to his widow 1} times as much as to both his
son and daughter. 'What was the share of each ?

22. A farmer purchased 100 bushels of grain. He bought
2 times as many bushels of corn as of oats, and 2} times as
many bushels of wheat as of oats and corn. How many
bushels of each kind did he buy ?

23. Three candidates for an office polled the followmg

votes respectively: B received 3 times as many votes as A,

and C 1} times as many as A and B together. The whole

Ve
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number of votes was 11,000. How many votes did each
receive ?

24. A banker loaned to each of 4 men equal sums of
money. One man had the money 2 years, another 2} years,
another 3} years, and another 4} years. The entire interest
money received was $275. How much did each man pay ?

Let 2 = the number of dollars in the yearly interest on the sum
loaned to each man.

26. A library contains 9 times as many historical works,
and 5 times as many scientific books, as works of fiction.
The historical works exceed the works of fiction and science
by 10,500 volumes. How many volumes are there of each ?

26. A drover, being asked how many sheep he had,
replied that if he had 3 times as many as he then had and
6 more, he would have 150. How many had he ?

27. The expenses of a manufacturer for 5 years were
$17,500. If they increased $ 500 annually, what were his
expenses each of the five years ?

28. A farmer had 590 sheep distributed in three fields.
In the first field there were 25 more than in the second, and
in the third there were 15 more than in the first. How
many sheep were in each field ?

29. Of a herd of cows, 280 are Jerseys, and these are
359 of the entire herd. How many cows in the herd ?
Let ¢ = the number of cows in the entire herd; then £ =z = 280.

30. A town lost 79 of its inhabitants, and then had 6045
inhabitants. What was its population before the loss ?

31. What number increased by } of 259, of itself equals
315?

32. The annual rent of a house is $ 240, and this is 89
of its value. What is its value ?




CHAPTER 1II
POSITIVE AND NEGATIVE NUMBERS

20. Algebra treats of the equation, its nature, the methods
of solving it, and some of its applications.

21. In each of the equations thus far considered, the un-
known is an arithmetic number. But in many equations
the unknown cannot be an arithmetic, or absolute, number.

E.g., take the equation

3zx=22-05. @
Subtracting 2 z from each member of (1), we obtain
z=0—5,or —5. @

Hence the value of « in equation (1) is denoted by the
expression — 5, which has no meaning in Arithmetic.

If, therefore, such an equation as 32 =2z — 5 is to be of
any use, we must so enlarge our concept of number as to
give a meaning to such an expression as — 5.

To gain this larger idea of number let us first consider
opposite concrete quantities.

22. Positive and negative, or opposite, quantities. Two
quantities are said to be opposites, if, when combined (or
united as parts into one whole), any amount of the ome
destroys, or annuls, an equal amount of the other.

Of two opposite quantities, we call one positive and the
other negative.

E.g., debts and credits are opposites; for when they are com-
bined, any amount of debt annuls an equal amount of credit. If we

call credits positive, debts will be negative.
20
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Two forces acting in opposite directions are opposites ; for when
they are combined, any amount of the one annuls an equal amount
of the other. If one of these forces is called positive, the other is
called negative.

Distances measured or travelled in opposite directions are oppo-
gites ; for when they are combined, any distance travelled in the one
direction annuls an equal distance travelled in the opposite direction.
If one distance is called positive, the other is negative.

The sign + or the sign — is often written before the
measure of a concrete quantity to denote its quality, as
positive or negative. When thus used, the signs + and —
are read ‘positive’ and ‘negative,” respectively, and are
called signs of quality.

E.g., if we call credits positive, + $ 6 will denote $56 of credit, and
— 84 will denote $4 of debt. If + 8 inches denotes 8 inches to the
right, — 9 inches will denote 9 inches to the left. If + 3° denotes 3°
above the zero point, — 7° will denote 7° below that point.

If 4 400 years denotes 400 years after Christ, — 300 years will
denote 300 years before Christ.

In this chapter and the next we shall use as signs of
quality the small signs + and —, which, by their size and
position, are clearly distinguished from the signs of opera-
tion, + and —.

Exercise 7.

1. If credits are regarded as positive, what is denoted
by *$8? By -$11? By +$125? By -$175?

If debts are regarded as positive, what does each of the
above expressions denote ?

2. If degrees above the zero point are regarded as posi-
tive, what is denoted by +1°? By +22°? By —5°? By
—20°?

3. If distances measured from the point O to the right

are regarded as positive, what is denoted by -7 inches?
By *14 inches? By ~13 inches?
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4. If distances north of the equator are regarded as posi-
tive, what is denoted by +300 miles ? By ~700 miles ?

State in symbols each of the following in two ways:
6. $45 gain and $ 25 loss is equal to $ 20 gain.

+$456 +—$256 =+$20, gain being positive ;
or —$456 ++8$256 =—$20, loss being positive.

6. $25 gain and $ 30 loss is equal to $ 5 loss.

23. Positive one and negative one. Just as from the con-
crete unit $1 or 1° we gain the idea of the unit 1, so from
the concrete positive and negative units +$1 and -$ 1, or
+1° and ~1°, we gain the idea of positive one, +1, and nega-
tive one, ~1.

Positive one, *1, and negative one, —1, include both the idea
of the arithmetic one and that of oppositeness to each other.

The units *1 and —1 being opposites, each annuls the
other when added to it; that is, *14+-1 =0, and ~14++1=0.

The units *1 and ~1 are called quality-units.

Of quality-units, *1 is taken as the primary unit.

24. Positive and negative numbers. Just as we say that
+4 denotes 4 times *1, or 4 positive units; so, enlarging the
meaning of times, we shall say that +(%) denotes } times *+1,
or $ a positive unit, and ~(§) denotes § times ~1, or § nega-
tive units. :

Any arithmetic number of times the unit +1 is called a
positive number, as *5. Any arithmetic number of times
the unit ~1 is called a negative number, as —4 or ~(§).

Observe that the only new idea in a positive or a negative
number is that of the quality-unit +1 or ~1.

A positive number and a negative number are opposite
numbers. Thus +5 and ~4 are opposite numbers.

A positive or a negative number answers the two ques-
tions, ‘How many ?’ and ‘Of what quality ?’ Its arith-
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metic, or absolute, value snswers the first question, and its
quality-unit the second.

E.g., the arithmetic value of +5 is 5, and its quality-unit is +1; the
arithmetic value of —(§) is ¢, and its quality is negative.

A positive or a negative number is integral or fractional
according as its arithmetic value is integral or fractional.

E.g., +(§) and —(§) are fractional numbers.

26. Symbols for positive and negative numbers. A figure
(or figures) with the sign *, or ~, prefixed denotes a particu-
lar positive, or a particular negative number. The figure
denotes the arithmetic value, and the sign *, or —, denotes
the quality-unit +1, or ~1.

E.g., each of the expressions +3, =7, +8, —6 denotes a pamcular
positive, or a particular negative, number.

A letter with the small sign + or — prefixed denotes a
general positive or a general negative number. The letter
denotes a general arithmetic number, and the sign *+ or —
denotes the quality-unit +1, or ~1.

E.g., the expression +a denotes a general positive number, the
ietter @ denoting a general arithmetic number, and the small sign +
the quality-unit +1.

A letter not preceded by a small sign *, or —, denotes any
number, positive or negative, integral or fractional.

E.g., a denotes +2, =8, +7, -9, or any other number, positive or
negative ; so also does b, z, ¥, or 2.

Hence, a letter in Algebra denotes an algebraic number
except when, by the presence of a smalil sign (* or ~) before
it, it is restricted to an arithmetic value.

268. To add one number to another is to unite the one
with the other into one whole or aggregate.
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As in Arithmetic, the two given numbers are called sum.
mands, and the result is called the sum.

Ex. 1. Add +6 to +4.
Four times the unit +1 plus 6 times the same unit is equal to 4 + 6
times that unit ; that is,

+1x44+1x6=+1(4+6);
or +4 4 +6 = +10.
Ex. 2. Add -5 to -T7.

Seven times the unit —1 plus 6 times the same unit equals 7 4 4

times that unit ; that is,
’ =74+ -6=-12.

These examples illustrate the following principle :

27, To add one number to another of the same quality, find
the sum of their arithmetic values and prefix to it the sign of
their common gquality. Or stated in symbols,

ta+*tb=*(a+6b), a+b="(a+b).

Proof. a times the unit *1, or ~1, plus b times the same
unit is equal to @ 4 b times that unit.

BExercise 8.

1. What is the arithmetic (or absolute) value and the
quality-unit of +7? Of -156? Of -11}4? Of -a? Of
ta+2)? Of “(a+b)?

2. Find the sum of *5 and *7. Of +3 and +11. Of -3
and “16. Of ~7 and 9. Of ~10 and ~12. Of *7 and *14.

3. Find the sum of *(3) and *(§). Of *(§) and *({).
Of ~(§) and ~(#f). Of ~(}) and ~(})-

Find the value of *a + *b, '

4. When a=43,b=63. 8. When a=23,5="72.

Find the value of ~a 4 -5,
6. When a=15,b=12}. 7. Whena=4,b=4}
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‘What is the value of m +n,
8. When m =+24, n=+32?
9. When m=-36, n=-22?
10. When m=*(}), n=*(§)?
11. When m==(§),n="())?

28, The sum of two opposite numbers which are equal
arithmetically is zero. Or stated in symbols,

ta+-a=0. @

Proof. Since ~a and *a are opposite numbers equal in

arithmetic value, they annul each other when added (§ 22).
Eg,2++2=0,+6+-6=0, 7T+ +7=0, +8 4+ -8 =0,

Ex. 1. Add -5 to +8.
When -5 is added to +8, the 5 negative units in —6 annul 5 of the
8 positive units in +8 There remain 8 — 5 positive units ; that is,

+8 4 =B = +(8 — b) = +3,

Ex. 2. Add -9 to +4.

When -9 is added to +4, 4 of the 9 negative units in -9 annul the
4 positive units in +4. There remain 9 — 4 negative units ; that is,

+44-9=-(9—4)="56.

These examples illustrate the following principle :

29. To add one number to another of an opposite quality,
JSind the difference of their arithmetic values and prefix to it the
quality-sign of the number which is arithmetically the greater.

Or, stated in symbols,
*a+-b=*(a —b), when a>b. @
*a+-b=-(b—a), when a<b. @

Proof. When a>b and -b is added to *a, the b nega-
tive units in ~b annul b of the @ positive units in *a.
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There remain @ — b positive units; hence, *(a — ) is the
sum.

When a < b, a of the b negative units in ~b annul the a
positive units in *a. There remain b — a negative units;
hence, ~(b'— @) is the sum.

Exercise 9.

1. To make the sum zero, what number must be added
tot8? To-7? To-31? To*14? To*a? To-b?

2. Find the sum of +8 and =6. Of *5 and 7. Of -8
and *4. Of +11 and -15. Of -5 and *+17.

3. Find the sum of =(}) and *(§). Of ~(§) and *(4}).
Of *(§) and ~(s%). Of *(}) and ~(}§).

‘What is the value of *a + -b,

4. When a =43, b=23? 6. When a =23, b=43"?

5. When a =63, b=43? 7. When a=43, b =637

8. Write six different sums each of which denotes zero.

What is the value of z+y,
9. When o= -7, y= +9?
10. When z=*14, y=-19?
11. When z="(%), y=*@?
12. When z=*}}), y="4)?

80. The sign of continuation is ... or ---, either of which
is read, ‘and so on,’ or ‘and so on to.’

Thus, 1, 2, 3, 4, ---, is read, ¢1, 2, 3, 4, and so on’ indefi-
nitely; 2, 4, 6, 8, --- 32, is read, 2, 4, 6, 8, and so on to 32.

The sign .-. stands for kence or therefore.

The sign -.* stands for since or because.
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81, The integers of arithmetic number make up the
series (1).
01 2 3 4 5 6 7 8 9.. @)
T T 7 T T T T T 1
Writing the positive and the negative integers in opposite
directions from zero, we obtain series (2).

e =4 =3 -2 -1 0 *1 *2 +3 *4 ... @
1 T T T T T T 1
If the divisions of the lines in (1) and (2) be taken as units of
length, then each number in (1) expresses simply its distance from the
zero point; while each number in (2) expresses not only its distance,
but also its direction, from the zero point, distances to the right being
regarded as positive,

Note. Arithmetic numbers are not positive numbers. An arith-
metic number has no quality.

If to any number in series (2) we add *1, we obtain the
next right-hand number.

Eyg., 44+*1=-3, “24++*1="1,
and: so on for the entire series.

Hence, if we say that a number is tncreased by adding to

it *1, the numbers in series (2) increase from left to right;
that is,

ey 8372, 2<1, 1<0, 0< L, 1 <20,

We have, therefore, the following properties of positive
and negative numbers:

(i) Any positive number is greater than zero; while any
negative number is less than zero.

(i) Of two positive numbers the greater has the greater
arithmetic value; while of two negative numbers the greater
has the less arithmetic value.

Eg., +4> 0by +4, -4< 0 by +4, —7< 0 by +7,

+4>+2 by +2, -4 < -2 by +2, —71< -8 by +4.
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Note. If we agreed to say that a number was increased by adding
to it —1, then the numbers in series (2) would increase from right to
left ; positive numbers would be less than zero, and negative numbers
greater than zero. By common consent, however, it is agreed to say
as above that a number is increased by adding to it +1, the primary
unit. :

HExercise 10,

‘Which is the greater, and how much the greater,

1. *3 or *7? 4. OQor *1°? 7. T or *3? -
2. *2o0or 87 6. Oor 1°? 8. *2 or —3?
3. 11 or *¥2°? 6. 5 or 9? 9. 5or "11?

10. When is the product of two arithmetic fractional
numbers greater than each number ? Less than each num-
ber? Greater than one and less than the other? Can the
product of two arithmetic integral numbers ever be less
than either number ?

11. When is the sum of two algebraic numbers greater
than each number? Less than each number? Greater
than one and less than the other ? Is the sum of two arith-
metic numbers always greater than each number ?

12. Multiplying by an arithmetic fractional number in-
volves what two operations with arithmetic whole numbers ?
Addition of algebraic whole numbers involves the one or the
other of what two operations with arithmetic numbers ?

82. In proving and using identities, the following princi-
ples concerning identical expressions will be useful.

These principles clearly follow from the definition of
identical expressions in § 15 and the axioms in § 6.

(i) Any empression is identical with itself.

(i) If each of two expressions is identical with a third,
they are identical with each other.
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(iii) If two identical expressions are added to or subtracted
Jrom two other tdentical expressions, the resulting expressions
are identical. :

(iv) If two identical expressions are multiplied by two
other identical expressions, the products are identical.

(v) If two identical expressions are divided by two other
identical ewpressions, mot denoting zero, the quotients are
identical.

(vi) If, for any expression in an identity, an identical ex-
pression is substituted, the resulting equality s an identity.

83. The converse of an identity is obtained hy interchang-
ing its members; that is, the converse of A= Bis B= A.
If A = B, then, from definition, B= A.

Hence, the proof of an identity proves its converse.

E.g., in proving +a ++b=+*(a + b),
'We prove *(a+b)=*a +b.



CHAPTER III

ADDITION, SUBTRACTION, AND MULTIPLICATION OF
REAL NUMBERS

34, The positive and negative numbers defined in Chap-
ter I are together often called real numbers.
In performing any operation with real numbers, we must
_keep in mind that any such number is simply an arithmetic
multiple of the quality wnit *1 or —1, and that arithmetic
numbers are added, subtracted, multiplied, or divided in
Algebra just the same as in Arithmetic.

'36. Addition. Obsegve that, by §§ 27 and 29, the addition
of one real number to another is reduced to the addition of
one arithmetic number to another, or to the subtraction
of one arithmetic number from another.

To find the sum of ‘three or more numbers we add the
second to the first, to this sum we add the third, and so on.

Ex. 1. +8+4 -5+ +6 4+ —T=+3 4 +6 4 —7

. =+9 4 -7 = +2,
Ex.2. T++56+-34++9=-2+-3+149
=64 +9=+4,

36. The two follbwing laws of addition are constantly
used in Arithmeétic and Algebra:

The commutative law. The sum of two or more numbers
is the same in whatever order they are added.

Thatis, a+b+e=b+c+a=c+b+a=.- (A
30 :
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Thus, we can commute summands (change their order) to
suit our convenience or purpose.

E.g., in Arithmetic we write

1+8+4+2+i=4+4+4+8+2 ®
Here by a change of order we can add the fractions first.
Prove each of the two following particular cases of (4):
Ex. 1. +4+4+-6++6=+4 4++6 4+ 6. §14
Ex. 2. +2+4+-3+4+4 =42 ++44+-8 =+4 4+ -3 4+2.

Proof of law (A). This law holds true for- arithmetic
numbers, as is learned in Arithmetic; hence the total
number of positive units in a, b, ¢, etc., will be the same
in whatever order these summands are written. For the
same reason the total number of negative units in a, b, ¢,
etc., will be the same in whatever order their summands
are written.

Hence the sum will be the same, however we change the
order of the summands; for equal numbers of opposite
units always annul each other.

The associative law. The sum of three or more numbers
18 the same in whatever way the sucoesawe numbers are

grouped.
 That is, a+b+ec=a+(b+o) (B)
Thus we can associate successive summands (group them)
to suit our convenience or purpose.
Prove each of the two following particular cases of (B):
Ex. 1. +4 +-b ++6 =+4 + (-6 ++6).
Ex. 2. -6 ++4+-7=-6+ (+4 +-T).

Proofoflaw(B). a+bt+c=b+ct+a by (4)
’ =(+c)+a . by notation
=a+((d+c) by (4)

A similar proof would apply to any other case.
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The rules for addition in Arithmetic are based on the commutative
and associative laws just given.

E.g., to add 46 and 23, we have

454+23=404+6+20+3 by notation
=40+20+6+3 by (4)
=(40 +20)+ (6 + 3) by (B)

‘Writing one number under the other and then grouping the vertical
columns, as we do in Arithmetic, is but a convenient way of a.pplymg
laws (4) and (B).

37 Siuce, by the laws of addition in § 36, we can change
the order of summands and group them to suit our purpose,
we have the following rule for adding three or more num-
bers, some of which are positive and some negative:

Add all the numbers of one quality, then add all the numbers
of the opposite quality, then add the two resulting sums.

Ex. —5++9 4+-11 ++6 =5 +—11 ++9 ++6 . by (4)
=-16 ++16 =-1 by (B)

In practice, the rearrangement and regrouping of the summands
should be done mentally and simultaneously.

Exercise 11,

By § 37 find the value of each of the following sums:

1. 19 47 4+5. B 4546 478 44T,

2. ~12 449 44, 6. ~94+6 +-11 4+12 4.
3. —22 445 4++T. 7. 15479 44T 48 4411,
4. *42+79+73. 8. "+ @D+ @+

Find the value of v +y+ 2+ v:
9. When z=-25, y =32, z =45, v =+28.
10. When z=%94, y =-T75, 2=*82, v =-65.
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88. From the definition of zero it follows that

a+0=a.
That is, any number plus zero equals the number itself.
Eg., 7+0=7,8;i-0=8.
Also, 9+(2—2)=9, 6 +(b—5)=86.

39, Subtraction is the inverse of addition. Given a sum
and one of its two parts, subtraction is the operation of
finding the other part.

As in Arithmetic, the given sum is called the minuend,
the given part the subtrahend, and the required part the
remainder.

Hence, to subtract any subtrahend from any minuend is
to find a third number, the remainder, which added to the
subtrahend gives the minuend.

Ex. +0=+0 +(+b +-6) $§ 28, 38

=(+9 ++6)+ 6. § 36
Hence,
+9 ++b is the number which must be added to —5 to obtain +9;

that is, +9 ——b = +9 4+b.

Here the remainder +9 ++b is obtained by adding to the minuend
+9, the subtrahend —5 with its quality changed. ’
This example illustrates the following rule :

40. To subtract one real number from another, add to the
minuend the subtrahend with its quality changed from * to ~,
or from ~ to +.

That is, M—ta= M+, @

M——a=M++a, )

when M is any real number.
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Proof. 1If to the second member of (1) we add the sub-
_trahend, *a, we obtain the minuend M; that is,

(M+-a)+*a= M+ (Ca+ta) by (B)
=M §§ 28, 38
also, M++a)+-a=M+ (fa+-a)=M.

Hence, by § 39, the second member of (1) or (2) is a
remainder.
Ex.1l. -4—-+7=-44+-7T="11.
Ex. 2. -b——-8=-56++8=+3.
Thus, subtracting any real number gives the same result
as adding its arithmetically equal opposite number.

E.g., subtracting 8200 credit from an estate is equivalent to adding
$200 debt ; and subtracting $300 debt is equivalent to adding $300
credit.

Subtracting $100 income is equivalent to adding $100 expenditure.

Exercise 13.

Perform each of the following indicated subtractions:

1. +19 —+7, 4, *6 —+7. 7. 20 —-25.
2. ~23 —*12. 5. +12 —+20. 8. —68 —~98.
8. ~16 —-30. 8. ~214 —+25. 9. —118 ——120.

What is the value of a —b,
10. When a =+5, b=*4? 12. When a="4, b="T7?
11. When a=*7, 5=*9? 13. When a=-14, b="11?
14. From *4 4-8 419 4~3 subtract *7 42 419 4--8.
15. From -10 4+-7 4115 4-3 subtract +7 +-11 4-~17.

41, When a monomial or the first term of a polynomial

is preceded by the sign of operation + or —, zero is to be
understood before this sign of operation.
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Thus, -*ta=0—-ta="q, -"a=0-"a="*a
Again, —*54*T=0—*54+T="5+4+T.
42, Successive subtractions or successive additions and sub-

tractions can be performed from left to right, one at a time
in succession.

Ex. 1. 8 -3 —-+2—--6=+11—-+2—--6
=+9 —~6 =+16.

‘We can, however, express each term to be subtracted, as
a term to be added, and then apply the principle in § 37, for
finding the sum of three or more numbers.

Ex. 2. +8—-3—+2——6 =+8 ++3 +-24+6 [6))
=+17 +-2=+16.

43. Commutative law of subtraction. Since each term to .
be subtracted can be expressed as a term to be added, the
commutative law holds for subtraction as well as for addi-
tion, provided the sign of operation + or — before each term
is transferred with the term itself.

Eg., +] =B 49 —+4=—-84+7 —+4 4+
=t =8 40 4.

Exercise 13.
Find the value of each of the following expressions:
1. 64243, 2. 14—-t94+-4. 3. *324-5-—-16.
4. 6 —"2++3. 5. *4--"2—-*342-*+54+3 6.
6. *25 —-*+144+-10-}+14 --—5 —+18 4-+16 +~18.
7. “354-5—--324+24 —-14 428 — 8.

44, From the definition of zero it follows that
a—0=a.
That is, any number minus zero equals the number itself. .
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46, Multiplication. As in Arithmetic, the number multi-
plied is called the multiplicand, the number which multiplies
is called the multiplier, and the result the product.

In Arithmetic the product 9 x 3 is obtained Wy taking the multipli-
cand 9 three times as a summand, and the multiplier 3 is obtained by
taking the primary unit 1 three times as a summand.

The product 9 x  is obtained by dividing the multiplicand 9 by 3,
and multiplying the result by 2, and the multiplier 2/3 is obtained by
dividing the primary unit 1 by 3, and multiplying the result by 2.

In each case we obtain the product by doing to the multiplicand
just what is'done to the primary unit to obtain the multiplier.

Hence, we define multiplication as follows :

To multiply one number by another is to do to the multi-
plicand just what is done to the primary unit to obtain the
multiplier.

The multiplicand and the multiplier together are called
the factors of the product. ’

46. Multiplier any arithmetic number. Let @ and & denote
any two arithmetic numbers. Then by arithmetic, we know
that b times a units of any kind is equal to ab units of that
kind.

Hence *a x b= *(ab), @
and : ~a x b="(ab). )

Eg., +4x5=+20, -Tx4=-28, ~(}) x8=-12

47. Multiplier any positive or any negative real nuhber.

To obtain *§ from the primary unit *1 we multiply that
unit by 6; hence, by the definition in § 45, to multiply any
number by +b we multiply that number by b.

Therefore *a X *b =*a X b = *(ab), @
and —a X *b="a x b= "(ab). R ¢))

Hence, to multiply any number by *1 is to take that
number once ; that is, *a x *1=*a; "a X *1 = "a.
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To obtain —b6 from the primary unit +1, we change the
quality of that unit and multiply the result by &; hence, to,
multiply any number by —b, we change the quality of that
number and multiply the result by b;

that is, *ta X b ="a x b = ~(ab), ®3)
and —a X ~b="*a x b="(ab). @
Hence, to multiply any number by —1 is to change the
quality of that number; that is, tfa X "1="a; "a X "1="*a.
From identities (1) and (4) we have the law,
The product of two real numbers like in quality is positive.
From identities (2) and (3) we have the law,
The product of two numbers opposite in quality is negative.
These two laws together are called the law of quality of
products.
From identities (1), (2), (3), (4), it follows that

. The arithmetic value of the product of two real numbers is
the product of their arithmetic values.

Eg., +6 x +7 = +3b, -6 x -8 = +48.
+4 x -9 =38, =7 x +8 = —b6.
Exercise 14,

Find the value of each of the following numeral ex-
pressions:

1. ¥2x*4. 3. *9x-8. 5. 21 x+*3. 7. *22x 6.
2. 2x-7. 4. 11x-1. 6. t31x-1. 8. 32x 4.
9. 110 x34+-8x*2. 11. 6Xx 548 x4—*12x 5.

<

J100 142476 x75. 12, "9Ixt24+16x 4—"14x*3.
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When a=*2, b="4, m=-3, n="19, =+6, find the
_value of each of the following literal expressions:

13. ab + ma. 16. ax — nb. 19. (a+ ) (n+ m).
14. ax + bm. 17. (a—=Db)a. 20. (@ —b)(n—m).
15. am — ba. 18. (m —n)b. 21. (b—=x)(m—n).

48. Continued products. By § 47, we obtain
*a X *b x te=*(ab) x t¢ = *(abe).
*a X tb X ~¢ = *(ab) X ~¢ = ~(abc).
*a X ~b x ~¢ = ~(ab) x ~¢ = *(abc).
~a X ~b x ~c=*(ab) x ~¢= ~(abe).
From these and similar identities we have the following
laws which are more general than those in § 47:

A product which contains an odd number of negative fuctors
18 negative; any other product is positive.

The arithmetic value of a product is the product of the arith-
metic values of its factors.

Ex. Find the value of +8 x =2 x +4 x —6 x —b.

The product is negative, since there is an odd number, 3, of nega-
tive factors ; its arithmetic value is 8 x 2 x 4 x 6 x 5, or 720.

Hence, +3 x —2 x +4 x =6 x =5 = —720.

Exercise 15.

When a=-2, b="%4, ¢="6, =-3, y="5, find the
value of each of the following literal expressions.

1. abe. 4. (b+a)ca. 7. axy—be.
2. abxy. 5. (x—y)abe. 8. xy— abc.
3. abcxy. 6. (b+c)axy. 9. x + abey.
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10. Prove *1x1x"1x"1="1; "1x-1x~1x"1=*1.

" 11. Prove *a x ~b x “¢=(*1 x ~1 x ~1) (abc).
12. Prove —a x *b x "¢ X "z =("1 x *1 x ~1 x ~1) (abcz).
Examples 11 and 12 illustrate that the product of two or more num-

bers is equal to the product of *heir gquality-units multiplied by the
product of their arithmetic values.

49, The two following laws of multiplication are con-
stantly used in Arithmetic and Algebra:

The commutative law. 7he product of two or more num-
bers is the same in whatever order the factors are multiplied.

That is, abec=achb=cba=.... “n

Prove each of the two following particular cases of (A’):
Ex 1. +2x 83 x+4x -6=-6x%x -3 x +2 x +4.
Ex.2. 3x+7Tx 2x-1=-2x+7x-1x-38.

Proof. In Arithmetic we have learned that this law
holds true for arithmetic numbers. Hence, by § 48, the
arithmetic value of a product of real numbers is the same
in whatever order the factors are multiplied.

From the law of quality, in § 48, it follows that the quality
of a product of real numbers will be the same in whatever
order the factors are multiplied.

Hence, a change of order of factors affects neither the
arithmetic value nor the quality of their product.

The associative law. The product of three or more num-
bers is the same in whatever way_ the successive factors are

grouped.
That is, abe = a(be). (B)
Prove each of the following particular cases of (B'):
Ex. 1. -3x+t4x—2=-8x(+4 x —2).
Ex. 2. +6x-6x-1x+2=+5x (-6 x —1 x +2).
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Proof. - abc = bea 5y (0:0)
= (bc)d by notation’
= a(bc) by (4"

Exercise 16.

By using the commutative and associative laws, find in
the simplest way the value of each of the following ex-
pressions:

1. *33 x ~2} x 4. 4. *144 x -3 x -16}.
2. ~123 x ~33} % *3. 5. 373 x T x4
3. +142 x 12} x 8. 6. 333} x 5 x ~T X *3.

80. A product of two or more factors is multiplied by a
number if any one of the factors is multiplied by that number.

Proof: (ab) x ¢ = (ac)b = a(be). §49

5l. Powers. A product of two or more equal factors is
called a power. Any number also is often called the jfirst -
power of itself. ,

E.g., the product aa is called the second power of a.

The product bbb is called the third power of b.

aq is written a?; aaa is written a?;

aaa -+ to n factors, written a", is read ¢the nth power of a.’

a? is often read ¢the square of a,” and a® ¢ the cube of a.’

In o a is called a base. Thus in 3% 3 is a base; in
« is a base; in y™, y is a base.

52. A positive integral exponent is a whole number which
(written to the right and a little above a base) indicates
how many times the base is used as a factor, as 3 in a?
or n in a”
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To avoid ambiguity, a base which is not denoted by a
single symbol must be enclosed within parentheses:

E.g., (8)2=-8x -83=+9, while-32=-1(3 x 8) =-9.

Again, (4 x 5)? = (4 x b) (4 x b5) =20 x 20 = 400,
while . 4x52=4x(5x5)=4x 25=10.
" The meaning of fractional and negative exponents will be deter-
mined in a later chapter.

A power is said to be odd or even according as its expo-
nent is odd or even.

63. Quality of a power. An odd power of a negative base
is the only power which involves an odd number of negative
factors; hence, by the law of quality in § 48 it follows that

An odd power of a negative base i3 negative, and an even
power positive; any power of a positive base s positive.

E.g., any power of +1 is +1; any even power of —1 is +1; any odd
power of -1 is 1.

Exercise 17.

1. What number is the base and what the exponent in
=3*? In (°8)’? In 32y*? In Bay)*? In (a+b)"?
Ina+40? In (27

Find the value of each of the following expressions:
2. ~3. 3. (-3 4. 17 -3 5. (17—3)%
Express each of the following products by a base and
exponent:

6. (zy) (xy) (xy) -+ to 8 factors.

7. (a+b)(a+b)(a+b) - to 12 factors.
Ezpress in symbols: :

8. The sum of the cubes of = and y.

9. The cube of the sum of « and .
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10. The sum of the squares of a, b, and e.

11. The square of the sum of a, b, and c.

64. If, in any one of the identities in § 48, the quality of
one factor is changed, the quality of the product is changed
but its arithmetic value remains the same.

This illustrates the following principle:

The quality of any product is changed by changing the qual-
ity of one, or of any odd number, of its fuctors.

Proof. By changing the quality of an odd number of
factors, the number of negative factors in the product is
changed from odd to even, or from even to odd; hence, by
§ 48, the quality of the product is changed.

Note. When for brevity we speak of the quality of an expression,
we mean, of course, the quality of the number which the expression
denotes,

6b. The quality of an expression is changed by changing the
quality of each of its terms.

Proof. Changing the quality of a termn does not affect its
arithmetic value. Hence, changing the quality of each term
of an expression will simply change a positive sum into an
arithmetically equal negative sum, or vice versa.

This principle is illustrated by the fact that if in a business account
we change debts into credits, and credits into debts, the balance will
not be changed in amount, but it will be changed from credits to debts,
or from debts to credits.

Ex. 1. Change in four ways the quality of —4 x +3 x —2. Of
—8x-b6x-7. Of tax+bx—c. Of tax—-bx—¢c. Of +tzx+yx—2.

Ex. 2. Change in two ways the quailty of —4 x +3 — =2 x +7.
Of ta X b+ —¢ x +x. Of -a X % — +b x +¢.
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66. Two uses of the signs + and —. Hereafter the larger
signs + and — will be used, not only as signs of operation,
but also with numerals as signs of quality.

To avoid ambiguity, parentheses will be used when needed.

Thus, in the expression,
(+H-(+D+(=8)—(-4),

each sign within parentheses denotes quality, and each without
denotes an operation.

Again, (— 3)ax —(+4)by +(—b5)cz=-8ax — +4 by +-bcz.

A letter with the small sign * or ~ will continue to be
used to denote a general positive or a general negative
number (§ 25).

67. Abbreviated notation. The sign — is never omitted.
But, for the sake of brevity, the sign 4 has been omitted,
and is to be understood in the two following cases:

(i) When no sign is written before a monomial or before
the first term of a polynomial, the sign + is to be under-
stood.

(ii) When only one sign is written between two successive
terms of a polynomial, the sign + is to be understood either
as a sign of operation or as a sign of quality.

E.g., 2 denotes 4 2, 3 a denotes 4 3 a, and a denotes + 1a.

Again, 6 — 6 denotes the difference (+ 6)—(+4 6) or the sum
(+6)+ (—6); in each case the sign + is understood between 6 and 5 ;
in the first case as a sign of quality, and in the second case as a sign

of operation.
Since (+6) — (+5) = (+6) + (= 5),
6 — 5 denotes the same number whether it is regarded as ex-

pressing the difference (+6)—(+5) or the sum (46)+(—5).
Again,

T—5+8=(+T)=(+8)+(+8), or (+D+(=5)+(+8),
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according as we regard the written signs in the first exprei-
sion as signs of operation or as signs of quality. _
Hence, in the abridged notation, the written signs in any
polynomial can be regarded either as signs of operation or
as signs of quality.
When all the written signs are regarded as signs of qual-
ity any polynomial becomes a sum.

Eg., —6+8-2=(=6)+(+8)+(-2),
or the sum of the terms — 5, 4+ 3, and — 2.
 Again, Tac—4z+8y=+Tac+(— 4z +(+3)
or the sum of the terms + 7ac, — 4%, and + 8.

In general formulas, such as (4), (B), ete., itis usually
better to regard the written signs as signs of operation; but
in most other cases it is preferable to regard the written
signs as signs of quality and, therefore, to regard every
polynomial as a sum.

68, Coefficients. If a term is resolved into two factors,
either factor is called the coefficient, or the co-factor, of the
-other.

E.g., in 4 abe, + 4 is the coefficient of abe, + 4 a of be, + 4 ab of ¢,
abc of + 4, and ba of + 4c.

A numeral coefficient is a coefficient expressed entirely by
numerals, and a sign of quality written or understood.

A literal coefficient is a coefficient which involves one or
more letters.

E.g.,in —42xy, —4 is the numeral coefficient of zy; z is the
literal coefficient of — 4y, yof —42z, and —4zof y.

When in a term no numeral factor is written, 1 is understood, e.g.,
a denotes +1.a and — a denotes — 1-a; abc denotes + 1. abc
and — abec denotes — 1. abec.
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Exercise 18,
Find the value of each of the following expressions:
1. 15-9. 5. (—11) x 7.
2. —9+7. 8. (—7) x(—4).
3. —8—6. 7. 9—T7T+4-3+5.
4. (—3)(—9). 8. 18 x (—3)+(—4) x8.

9. 3Bx(—T)—6x15x(—2).
Find the value of a4+ b—c+d and a —(—bd+c—d).
10. When a=2, b=—4,¢c=—6, d=—T.
11. When a = —T71, 6=—8, c=5, d=—6.

Find the value of z(y —v + 2).
12. When 2=5, y=—T7, v=—9, 2=8.
13. When z= -5, y=10, v=—4, 2=-1.

Find the value of z X (y —v— 2).

14. When 2=—10, y=—6, v=—09, 2=38.

‘15, When #=-16, y=—10, v=—12, 2=6.

16. What is the coefficient of & in a? In —a? In
—Tay?

17. In the expression — 8ab(z—y), what is the coeffi-
cientof z—y? Ofb(x—y)? Of8a? Of —8(x—y)?

18. If the sum (z—y) + (x—y) + (*x—y) + -+« to a sum-
mands is expressed as a product, what is the coefficient of
z—y?

69, Having given a product and one factor, division is the
operation of finding the other factor. That is, if n'is one
factor of m, m -+n denotes the other factor; whence

(m-+n) X n=m. @



46 ELEMENTS OF ALGEBRA

60. The distributive law. 7The product of a polynomial by
a monomial is cqual to the sum of the products obtained by
multiplying each term of the polynomial by the monomial;
and conversely.

Thatis, (a+b+ec+ - )x=ax+bx+cx+ - ©

The distributive law lies at the basis of multiplication in Arithmetic,
e.g., if we wish to multiply any number as 248 by 7, we separate 248
into the parts 200, 40, and 8, multiply each of these parts by 7 and
add the results,

Thus, 248 x 7 =(200 +40 + 8) x 7 )
=200 X 7+40 x 7T +8x7 @)
= 1400 + 280 + 56 = 1736,

We pass from (1) to (2) by the distributive law (C).

Prove each of the following particular cases of (C):

Ex.1. (4—38+46)(—2)=4(—2)+(—8)-(—2)+5(=2).

Ex. 2. (—4+2—6)(—8)=(—4)-(—8)+2(—8)+(—6)-(—3).

Ex. 3. (a+b+¢)-3=3a+3b+3c¢.

Proof. Let the multiplicand be any binomial a 4 b.

The proof involves three cases: when the multiplier is

(i) a positive integer, (ii) a positive fractional number,
(iii) a negative number.

(i) Let m be any positive whole number; then

(a+b)ym=(a+0d)+ (a+0d)+-:tomsummands § 47
= (@ + a + -+ tom summands)

+ (b +b+---tomsummands) § 36

= am + bm. @

(ii) Let m and n be any positive whole numbers other

than zero; then :-'3 will denote any positive fractional

number.

‘
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(e+d)(m+n)n=(a+bd)m §§ 49, 59
| = am + bm. by (1)
=a(m-+n)n+b(m-+n)n §§ 49, 59

=[a(m+n) 4+ b(m+n)]n. by (1)

Dividing the first and last expressions by =, by (v) of
§ 32 we obtain

(a 4+ b) (m +n) = a(m +n) + b(m + n). 2

Let r be any positive number, whole or fractional; then, .
from (1) and (2) we have

(@ +b)r=ar+ br. 3)

(iii) If the quality of equal numbers is changed from +
to —, or from — to 4, the resulting numbers will be equal.
Hence, changing the quality of both members of (3) we
have
@+d(—r=a(—=r)+b(—7), §§ 54, 55

where —r is any negative number, whole or fractional.
A similar proof would apply to any polynomial as well
as to a + b; hence the law as stated in (C).

Ex. 1. Multiply 83a2—56a+ 8b by 2z.

Ba?-5a+3b)(22)=(Ba)(22)+(~56a)(22)+(BD)(22)
=6 a2 — 10 az + 6 bz.

Observe that in applying (C) we regard a polynomial as a sum.

Ex. 2. Multiply 22 — 822 —22z by — 8 a.

(223 -8a3—22)(—3a)=(22%) (—~3a)+(—382%)(—3a)+(—2x)(-3a)
' =-—6ax®+ 9ax? + 6ax.



P —£2 T —x

Lo

s

£ -

-

ey 35

——
3
£r-23

b &R,

wi

2 {e—"7 w—

Il

2a

® F—Iz—4% 1w —

L]

£

Ff—z—3y_7

Sa—2

1L -2



CHAPTER IV

ADDITION AND SUBTRACTION OF INTEGRAL
LITERAL EXPRESSIONS -

6l. An integral literal expression is an expression which
involves only additions, subtractions, multiplications, and
positive integral powers of its letters.

Any expression which contains a literal divisor is called
a fractional literal expression.

‘E.g., a®+'% dnd 422 — § b* are integral literal expressions; while

; and -3 are fractional literal expressions.

A letter.can, in general, denote any integral or fractional
number; hence, any literal expression can have any mtegra.l
or fra.ctlona.l va.lue

E.g., when z = 1} and y = }, the integral literal expression

4 z+y=3%+}=4 a fractional number.
Also, when z =2 and y = 8, the integral expression § zy = 2.
Again, when z=10 and y =2, the fractional expression‘i: 5.

'The pupil must clearly distinguish between integral and fractional
expressions and integral and fractional numbers.

62. Like or similar terms are terms which do not differ,
or which differ only in their coefficients.

E.g., 4ab and 4 ab are like terms; so also are 4 ab and — 10 ab.
Again, 6 axy and — 4 bry are similar terms, if we regard 6a.and
— 4 b, respectively, as the coefficients of zy in the two terms; but if
8 and — 4 be taken as the coefficiénts, these terms are dissimilar.

49
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63. Sum of similar terms. The converse of thé distribu-
tive law in § 60 is

ax+brtce+ . -=(a+db+c+ ) ©)

That is, the sum of two or more similar terms is equal to
the sum of their coefficients into their common fuctor.

1. Find the sum of 7@, — b a, 4 4.
(+NDe+(—=b6)a+(+4)a=(T—b6+4)a=6a.
2. Find the sum of 3 ab?, — b ad?, — 8 abd3. .
(+ 8)abi + (— 6)ab? + (— 8) ab?= (3 — b — 8) ab?=— 10 ab%.
3. Find the sum of 7 (¢ —b), —5(a — D), 4(a - b).
(+7)(a=Db)+ (—B)(@a—b) + (+4)(a—b)=(T—b+4) (a—b) =6 (¢ —b).
64. By § 57 the sum of two or more terms is indicated by
writing them in successioun, each term being preceded by

the sign of quality of its numeral coefficient.
The sum of unlike terms can only be indicated.

E.g.,thesumof — 5¢, 7Ta, and —9b is
—bc+T7a—-9b,or Ta—b6c—9b.
Again, the sum of — 8 ax, — 6 by, and 6 cz is
—8ax—b5by+ 6c¢cz, or 6¢cz —Bax — b5by.
Bxercise 20.
Find the sum of:
1. 2a, —3aq, ba. 6. 4ab® —1T7ab%, 3ab*
—42 22, —2. 7. =324 520, —4 2
ab, —2 ab, 3 ab. 8. 2ac®, —5ac’, —8ac’
2a%, —30a% Ta 9. —5da¢ —3ad’¢, 9a’’
™, — 22 42° 10. 400%™, — T by=, 90y~

o o ®




11.

12

13.
14.
15.
16.
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Tad, —bad?, das?, —9az?, — 1402, 250z
9az®, —ad’, 4az®, —Tba®, —1dca’ .
—ayz, foyz, — g ayz, Gayn, —fayz, W aye.
(z—a)’, —2(z—a)?, 4(z—a)®, —5(z—a)?, 12(z—a)®.
@+y), =5 +y), 9(='+y), —3('+¥), —T("+y").
@y, —4(@—y"), —3(@—¥), —T(@—y"), 8(z—¥.

Simplify each of the following expressions by combining
like terms:

17.
18.
21.
22.
23.
24.
25.
26.

27.
"
29.
30.
31.

32.

BT 44852 19. 8P4y —T 2y
b3 —Tz" 20, ar'—Tz'+ba'—5at.
—92 + 17074+ 3 — 42— 2+ * — By’
3ab®—Tab'+8ab* — 4 abd +7 ez — 11 2.
—1284+42*— 92+ T8+ 8a*—9a°+Tab.

7 abed — 11 abed + 41 abed + 7 2y — 20 zy.

—$F 22+ § 2P+ 88—y —
Tad+2a'—52°—3a

T224+2a2-522—-8a?=723—-5224+2a%—-8a2 by (4)
=222 —al.

Tab—bzy+3ab+422y—6ab—uay.
—9ax?+5by +Tax* -3 by + 11 ax* + 4 by’
—Tey—4ab+9x2+11cy*+10ab— 52z — ab.
2@ —1)+3(a'+1)—4(z*—1)—5(a’+1).
3(a?+ 09— 4(2+9)—T(6* +0) + B (z +3).

Review this exercise, solving each example mentally.
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65, Addition of polynomials.
Ex.1l. Add —32'+ 7z to b2? —4u.
(bx2—42)+(—822+T2)=b622—42— 3z~+7ac byconverseof(B)
' =222+ 3z T by (4), (B)
Ex. 2. Find the sum of
422 —3xy+y2 —222—bzy— 692 and 2:«:11—ac’—3b2

In adding polynomials, it is convenient ‘to write them under each
other, placirig like terms in the same column.

Thus, (42% — 82y +¢*)+(— 222~ b2y — 64%)+ (2 2y — 2% — 3b“)

can be written 42— ‘3xy+ y?
 —22—bay—6y?
— 22427y " —8b1

2 —6xy—by?—30b2

Here the rows.of terms are the groups of terms.as given, while the
columns of terms are the groups of simjlar terms obta.med by rea.rra.ng-
ing and regrouping by laws (4) and (B). : .~

Since there is no carrying as in Arithmetic, the addtl;lon can be
performed from left to right, or from right to left

66. When in a polynomla,l the exponents of some one
letter increase or’decrease, from term to term, the polyno-
mial is said to be arranged in ascending, orin: descending,
powers of that letter.

This letter is ca.lled the Ietter of arrangement

E.g., the polynomial x” +2 x’y + 3zy? + 4y® isarranged
in descending powers of , z being the letter of arrangemerit ;

or, in ascending powers of y, y being the letter of arrangement. .: !

In arranging a polynomial in ascending:or :descending
powers of any letter, we must first combine all the terms
which contain the same power of that letter. = = " S nE

In adding polynomials, it is usually convenient.te. arrange
them in ascendmg, or descendmg, powers of some’ letter,

as below: - - . T TR KL E ST QLT "R 1
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Ex. 1. Find the sum of 222 — 328 4 x — 4,

. Te—4224+ 52845, and 722 —4234+22—1.

Arranging each polynomial in descending powers of z, we have
—8z84+ 2224 zx—4

bat—4224 Tx+56
—423 47224 221

—2234+ 522+ 102

Exercise 21.
Find the sum of :

1. a+2b—3¢, —3a+b+42¢c, 2a—3b+c

2. —3z+2y+2z x—3y+22 22+y—3=

3. :—15a—19b—18¢:, 14a+4+15b6+8¢, a+5b+9c.

4. S5ax—Tby+cz, ax+2by—c2y, —3ux+2by+ 3c2.

5. 20p+q—7r,p—20q+7, p+q— 207

6. —5ab+6bc—Tac, 8ab—4bc+3ac, —2ab—2bc

+ 4 ac.
7. py+ qr —pr, —pq+ qr+ pr, pq — qr + pr.

8. 2ab+ 3ac+ 6abe, —5ab+2bc—5ybc, 3ab—2bc
~3ac.

9 P4ay—y, —2+yz+y 2+ — 22

10. 5a® -3+ ¥ —2a’+3d% 4 —2a>—3d2.

11. 24y —2zy, 222 -3y —4yz2, 22— 22" — 32z

12. @+ 32y +3xy’, —32% — 62y’ — o, 35ty + 422
13. P—4ty—527% 3aty+2a%—6ayt, 3P +6ayt— o
14. a®—4a® + Gabe, a®b — 10abe + ¢, U* + 3a% + abe.

16. 3a®—100* 4+ 5 — T be, — @40 =103+ 3ab,
F¢+1Lbc+8ac~2ab, 42 —4bc+ac, —2d*+60*—Y uc—be.
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16. 42 +128 —2—10, 1122 — 224 —2* 4+ 9, 92° — 34
44z, 42 -2 -5, 6 —*4 222 T,
17. §2*—}z+ 4, —3F+42—4 §20+42+4
18. $a’+4ab—1¥, §a'—ab—§b%, —a'—fab+20%
19. —§2'—2y+y, 37 —fay—4y’, —§2*+ 22y 34~
20. —§2'—{ay’+ 29, §oy+ay*+y P20 -3y
21, —3a*+bar—a’ 222+ 4ax®—6a¥r, 6 ax®—3a’x
+a) —28+4a*2—5ad
© 22, 384y —3yz—2% 22y—3y°+ 3y, —422—22y+
v+ 2
23. Given 2=0+4+2c—3a, y=c+2a—3b, and
2=a+2b—3c; show that 24+ y+2=0.
24. Given a=52—3y—22 b=565y—32z— 24, and
¢=b62z—3x—2y; show that a4+b+c=0.

67. To subtract one expression from another, change the
sign before each term of the subtrahend from + to — or from
— to +, and add the result to the minuend.

Proof. Changing the sign before each term of the sub-
trahend changes the quality of ‘the subtrahend (§ 55); and
by § 40 the minuend plus the subtrahend with its quality
changed is equal to the remainder.

Ex. 1. From — bz3 take 4 x%.
— 52ty —(+ 4a%y) = baty +(— 42Y)
=-—9z.
Ex. 2. From 52+ zy — m take 222 4+ 82y — T2

Changing the sign before each term of the subtrahend from + to —
or from — to +, and adding the result to the minuend, we have

b2+ zy—m
—222—8uay + 79

822 — Tzy — m + 7 y3, Remainder.
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Nore. The signs of the subtrahend need not be actually changed ;
the operation of changing the signs ought usually to he per(ormed
mentally, as in the following example.

Ex. 3. From 22¢ — 823+ 72— 8 take 2¢ — 222 -9z + 4.

©® ® S J ok » D

2 xt -8+ Tz— 8
ot — 228 - 9z+ 4

o+ 228 -322+ 162 — 12

Exercise 22.
From 4a —3b + ¢ subtract 2a —3b —e.
From 152 4 10y — 18z subtract 22 — 8y 4 2.
From —10bc+ ab—4cd take —11ab 4+ 6cd.
From ab + cd — ac — bd take ab + cd + ac + bd.
From m?+4 3 n® subtract —4m?—6n+ 712,
Toy—(—32y)=2 '
— 9%y — (+ 6a%y) — (— 202ty =?
28— (—128°) — (+ 142 — (+ 9+ (—29) ="

28 a%* — (+ 17 a®*) — (— 19 2%) — (+ 15 2%)
— (=52 ="?

From

10.
11.
12.
13.
14.
15.
16.

— 8a%' 4+ 152y + 13 2y® take 4 2% + Ta'y — 8y’
a?be + bica 4 cadb take 3a’bc — 5 b%ca — 4 cad.

— Ta® + 8 ab? + cd take 5a®b — T ab® + 6 cd.

10 a®b® + 15 ab® 4+ 8 a® take — 10 a®?®+15ad? — 8a%
¥+ —2abc take a® 4 b*— 3 abe.

T abc — 3at+ 55 — ¢ take a®+ b*+ ¢ — 3 abe.
}&—pay—y* take —§o +ay—9*

\
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17. $2*— }ax take } —1 o' —§az.
‘18. }a®—2a2®—} a’x take }a%r + }a®—§ax’

If A=a®—4ab—30 B=ab—4b"—3a},
C=t—4a*—3ab, D=2a*+2b"+2¢,
find the expression for
19. A+B+C+D. 22, A—B—C—D.
20. A+B+C—D. , 23 —A—B+C+D.
21. A+ B—C—D. 2¢. —A+B—C+D.

In solving example 20, under the values of 4, B, and C' write that
of D with its quality changed, and then add the results.

25. From 52+ 32 —1 take the sum of 2¢ -54T2
and 322 +4—2a° 4. .

26. From the sum of 2a®*—3a®+ a—2 and 24 8a®—a®
subtract 3a—T7a®+5a’

27. From the sum of 42*+32—17, 22° -3z 4+22°—1,

and —52*+2g—2*4+9 take the sum of 24— 112 and
9 +54°4+3—22.

68. Removal . of signs of grouping. The converse of the
associative law for addition in § 36 is

at+(b+c)=a+d+ec @

That is, a sign of grouping preceded by the sign + can be
removed if each enclosed term is left unchanged.

Observe that the sign + is understood before b within the
parentheses.

Ex.l. a+(42z—-Ty+52)=a+42z—-Ty+b2. -
Ex. 2. 24(—-82z+2y—4a)=2—-32+2y—4a. -
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By the rule for subtraction in § 67, we have

A sign of grouping preceded by the sign — can be removed,
if the sign-before each enclosed term is changed from + to —,
or from — to +.

Ex. 1. 6a—-(8b—-2a+4c)=6a—-8b+2a—4c (¢))

=Ta—-8b—-4c

The sign + is understood before 3 b within the parentheses.

Ex.2. —(bm—4n)—(-3m+Tn)=—-5m+4n4+8m—-Tn_ (2)

=—-2m-3n

69. Sometimes one sign of grouping is enclosed within
another; in this case the different signs of grouping must
be of different shapes to avoid confusion.

When there are several signs of grouping they can be
removed one at a time by the rules of § 68; and it is better
for beginners to remove at every stage the mnermost sign of
grouping.

Ex. Removing the signs of grouping, simplify the expression :

a—[z+{y—-(b—-0)}-2]
a— [z+{v G-c}—2z]=a—[z+{y—b+c}-2]
=a—-[z+y—-b+c—2z]
=a-z—-y+b—-c+a2 (¢))]

In the above process the parentheses ( ) were removed first, then
the braces { }, and then the brackets [ ].

Verify (1) when a =8, 2=3, y=—2;, b=—8, c=—4, 2=17.
"Removing the outer sign of grouping first, we have ’
a-[z+{y-( -0} —zl=a—z—{y-B -} +z
=a—-x-y+0b-0)+=2
=a—z—-y+b—c+a2

In review, the student should begin with the outer sign of grouping,
as he can thereby soon learn to remove, without error, two or more
signs of grouping at a time.
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Exercise 23.

Simplify each of the following expressions by removing
the signs of grouping and combining like terms:

1.
2.
3.
4.

5

a—G+c)+(d—c—a)
3z—(y—2a)+ (2+y—b52).
r—fy— G-}

-32—§244+65z2—(Bx+1y)}.

a—[a—fa—(2a—a)}].

Verify the results of examples 1 to 5 inclusive,

6.
7.
8.

.

10.
11.
12.
13.
14.
15.
16.
17.

70,

When a=7,b=—38, c=4, =10,y =—05, 2=—2.
When a=-5, b=2, c=—1, 2=-3, y=4, 2=—"T.
a+b—[a—b+fa+b—(a—0b)}]
2—(y—2)+{22—3y—5a}.
2a—{3b+(4c—3b+2a)}.
a—2b—{3a—(b—c)—"bel.
a—[3b+§{3c—(d—b)+a}—2a].

20— (by—3z+7)—[4+{z— By+22+5)}])
3a—[2b—f2c—12a—(40—8¢)}— (6b—12¢)].
—[16x—§{14y— (1524+12y) — (102 —152)}].
—[a—f{a+(z—a)— (x—a)—a}—2a].

22— (By—42)—{22—(By+42)}— {3y—(42+23)}.

Insertion of signs of grouping. Law (B)in § 36 is
a+b+c=a+(+eo)

That is, any number of terms of a polynomial can be enclosed
within a sign of grouping preceded by the sign +, if each
enclosed term. is left unchanged.
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Ex. 1. b2z—Ty+4c—-70=62+(—Ty+4c—-10).
Ex. 2. 4a+8c—62—-83y=4a+(+3c—562—3y).
From the rule for subtraction it follows that,

Any number of terms of a polynomial can be enclosed within
a sign of grouping preceded by the sign —, if the sign before
each enclosed term 18 changed from + to — or from — to +.

Ex. 1. Tz24+6y—b6a+T7c=7T2—-(—6y+b6a—"Tc).

Ex 2. a*—2cz~ca® + b3 —z=ar® —cx* + D2} —2cx —
=(a—c)z® + bxr? —(2cx + 2)
=(@—c)r*+ b2 —(2¢ + Dz

Exercise 24.

In each of the following expressions enclose the last four
terms within a sign of grouping preceded by the sign —,
without changing the value of the expression:

1. 3z—2a+6b—y+=z
2. a—b—24+3b—2+42y.
8. 3y+22+4+Tz4+a+2b0+c
4. 22—T2—2a—-3b—5¢c-9y.
Simplify each of the following expressions by combining

the terms having the same powers of @, so as to have the
sign + before each sign of grouping:

5. art4+b2*4+5+42bzx—524 22 — 3.
Ans. (@4 2)A+ (B —5)2*+(2b—3)z+5
6. 358 —T—22+ ab+5az® + cw — 42 — ba.
7. 2— T+ 50 —2cx+9ad* + Tw— 32 .
8. 2ci — 3abs + 4dw— 3bab — a¥P + o
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Simplify each of the following expressions by combining
like terms in @ so as to have the sign — before each sign of

grouping:
9. ar?+4 52— a%rt — 2 ba® — 3a® — bt
10. 79?—3cgw—abw“+5ax+7z"—abca:’.
11. a@’ + a%® — b’ — 5 2 — ca®. -
12. 3t — bo— aet—cat — 5w — Tat, |

Simplify the following expressions, and in each result
add the terms involving like powers of #:

18. 00®—2 co— [0 — {o—do— (b2 43 ca) | — (e —ba) .

14. Sax®— (Tbw— T ca®) —§6 ba® — (3 aa® + 2 ax) — 4 ca®}.
.Express in descending powers of x the sum of,

15. a’®— 5x, 2aa’— b add, 22° — ba? — ax.

16. ar’+bx—e¢, qr—1r—pd, ¥ 4+2x43.

17. pad®— qw, g2 —pw, ¢ — o5, pa? + g,

18. 2ax®— 3 ca* 4 px, 3nx —ma® —2¢a?, x — 22> — 30

19. bx —ax®—ba?, 3a° — 4nw — 2ma?, 22° — pat.

20. c*—2ax+mad, 4aP—bad, 4nz+2pa®, 3P—2rP—z.




CHAPTER V

MULTIPLICATION OF INTEGRAL LITERAL
EXPRESSIONS

7L The degree of an integral term is the number of its
literal factors. But we usually speak of the degree of a
term in regard to one or more of its letters.

E.g., 5ax is of the second degree, and 7 a%3 is of the fifth degree.
Again 4 abz%®, which is of the seventh degree, is of the first degree in
a, of the second degree in z, of the third degree in y, and of the fifth
degree in z and y. ’

72. The degree of a polynomial is the degree of its term
of highest degree.

E.g., the trinomial ax? + bx + ¢ is of the jfirst degree in a, b, or ¢,
and of the second degree in z. The binomial az3y + by?, which is of
the fourth degree, is of the second degree in z or y, and of the third
degree in xz and y. The trinomial ax? + 2 bxy + cy? is of the second
degree in z, in y, and in z and y.

78. An expression is said to be homogeneous in one or
more letters when all its terms are of the same degree in
these letters.

E.g., 2a®+ 3ab+ 402 is homogeneous in @ and b ;
6523 + 323y + 8 2y? + »® is homogeneous in z and y ;
and az® 4 2 bxy + cy? is homogeneous in z and y.
Exercise 256.°
‘What is the degree of the term 3 a®ba’yt,
‘1. Ina? 8. Inz? 5. Inaand b? 7. Ina,z,and y?

2. Inb? 4. Iny? 6. Inzandy? 8. Inb, x, and y?
61
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What is the degree of the trinomial
a’r* + 7 o’y — 5 abzy’,
9. In2? 10. Ina? 11. Inzand y? 12. In band y?
Whrite two trinomials of the third degree and homogeneous,

13. Ina and b. 14. In z and y. 15. In @ and =.

T4, A product is zero when one of its factors is zero.

That is, a-0=0and 0.-a=0.
Proof. a-0=0a(-0), §§ 11, 32
=ab—ab=0. ) §§60,11

Similarly, 0O-a=0—-0)a=0.

Conversely, when a product is 0, one or more of its factors
18 0. '

That is, if a . =0, then a=0, or 5=0, or a=0 and
b=0.

76. Any positive integral power of 0 i3 0 ; that is 0*=0.
Proof. 0*=0.0.0 ... to n factors = 0. § 74

76. Product of powers of same base.

Ex. 1. 2 x28=2x2x2)(2Xx2)=2x2x2x2x2=25
Ex. 2. ata?=(aaa)(aa)=aaaaa =a®b.

These examples illustrate the following law of exponents.

The product of the mth power and the nth power of the
same base s equad to the (m 4 n)th power of that base, and
conversely.

That is, a" . a" = a"tn.

Proof. a®a*:=(aaa -« to m factors)(aaa --- to » factors) § 52
= aaa + to m + a factors §49
=a™*" §52
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Ex. Multiply 3 a%? by — 4 atz?%.

(8 a%3) (— 4 atz%y) =3 a%® (— 4) a'zly §40
=3(—4)-a%t.2%2.y §49
= — 12 a%zy. §547,76

This example illustrates the method of finding the

T1. Product of two or more monomials. Using the commu-
tative and associative laws, we have the following rule:

Multiply together their numeral factors, observing the law
of quality; after this write the product of their literal factors,
observing the law of exponents.

Ex. Multiply together — 5 ay8, — 2 a%3, and — 9 az%.
(— bay?)(— 2 a%®) (— 9 az®y) = (— 6)(— 2)(— 9) aaar’zyty

= — 90 a‘z53.
Exercise 26.
Find the product of :

1. ¢ and a* 7. —3a% and 12 ab®.
2. o and o’ 8. —abed and — 3 a®be.
3. ¥4 9% and ¥~ 9. 7a%%® and — 5 2.
4. az and 3ax. 10. — 3a®’’ and 8 a’b’c'd.
5. —2abx and — 7 ab. 11. 2ab, —4a%, and 5 ad’
6. 62°% and — 10 axy. 12. —5azx, — 7a’, and 2 aa®

13. 8zy’, — 3 4%, and — 3ay.

14. —Tab? —3a%®% and — a®’

15. a*’c, 2 ab’, and — b abe.

16. — 7 a%P, oM and axy.

17. — a’bx, ab’x, and — ax’.

18. — a2, — b, and — aby.
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78. Multiplication of a polynomial by a monomial. The dis-

tributive law of multiplication is
(@a+bdb+c+ - )z=ar+bx+ cx+ -

That is, to multiply a polynomial by a monomial, multi-
ply each term of the polynomial by the monomial, and add
the several products.

Ex. Multiply 222 — 433 by —3ya.

222 —49°)(—38y2)=(22)(—3y2) + (- 49*)(—392)
=—6yz® + 12 ytz.

Writing the multiplier under the multiplicand, :"“4"
the work can be arranged as at the right of the —°¥2

s ErperT

Exercise 27,

Multiply : '

1. 4a°—~5a+3b by 2a®

2. 2a*4+3ab+20 by —3a®?

3. bc+ca—ab by abe.

4. 2°—324+52x—4 by —b52

5. —4244+32*—-32+4 by —62a%

6. 9gh—12ga—3gb by 3 gh.

7. — a*be+ b’a—cfab by — abd.

8. —bayz+3ay?—8alyz—Tayz by —2ays.

9. a’®’?®— abc — ax —by — cz by — 5 abexy.

10. ga;x’—gaa:’+§aw by — % a’.

11. —jay’+}ary—4ay’+4 o’ by —§aay.

12. o~y +}aay—} 2%? by .

13. (x+y)’—2a(x+y)+56a® by 2(x+).

14, (@+12—4a(@+1)*—2ab by —bab(z+1)*

15. (a?+1)*—3z(a®*+1)*—4 2y by —3a% (a®+ DL

16. (@ +y)—al(d®+y)*+3a® by —4 &% (2 + y)*
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Remove the signs of grouping, and simplify each of the
following expressions :

17. (@+b)c—(a—b)e. 19. }(>—2¢)+}(c—20).
18. 2(a—0b)+4(a+D). 20. Ta(b—c)—2b(a— o).
21. a?*(c?— d¥) + ¢d? (a? — b%) + b (@ — a?).

22. 2{3ab—4a(c—20)}.

23. Tac—2{2¢c(a—3b)—3(5c—2b)aj.

79. ‘To multiply one polynomial by another,
Multiply each term of the multiplicand by each term of the
multiplier, and add the resulting products.

Proof. Let z+y+2 be the multiplicand, and a4 b the
multiplier; then by successive applications of the distribu-
tive law, we have

+y+2)(a+d)=z(a+bd)+y(@+bd) +2(a+d)
=za+ya+za+zb+4yb+2b. §36
Similarly when each factor has any number of terms.

Ex. 1. Multiply — 2243y by 42 —T7y.
( —-2243y)(4z2-Ty)
" =(-2%)-42+8y-4z+(-22)(-Ty)+3y(-Ty) ¢))
=—820+ 122y + l4zy — 212 @
=-—-8234+ 262y — 212 3)
Performing the steps in (1) and (2) mentally, we can arrange the
work as below :
: . —-2z+38y
4rx—Ty
. -822 4262y — 218
Obeerve that the, ﬁrst and last terms in the product are the products
of terms in the vertical lines, while the second term is the sum of

the products of the terms in the diagonal iines.
* * In'this way Bolve the first 156 examples in Exercise 28.
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N

Ex. 2. Multiply 22 -2z + 28+ 1 by 2 — 2 + 22

Arranging both multiplicand and multiplier in descending powers
of z, we have

B+ -22 +1 Q)
-z +2
B4t —-2284 22 @)
—t— 234+ 22— 2 3)
2284222 —42+2 (€))
x5 -3+ b6x2—bz+2

Expression (2) is the product of (1) multiplied by 22 ;

Expression (3) is the product of (1) multiplied by — z; and
Expression (4) is the product of (1) multiplied by 2.

The sum of these partial products is the required product, by § 79.

A vertical line, or bar; is often a convenient sign of group
ing. Its use is illustrated in the mext example.

Ex. 3. Multiply 8 — 2 22y + 8y? — y8 by 22 — 32y + 3.

2 —22% + Szt — B
-3z + ¥

25— 2uty + Sjety? — 1jz¥yd
-8 + 6 — 9 438y
+ 1 -2 43 -

o5 — 5ty + 10 282 — 12 2%3 4 Byt — 1

The sum of the numbers before each bar is the coefficient of the
literal factor after it. .

In this example the multiplicand and the multiplier are both homo-
geneous. Observe that the product is homogeneous also.

This illustrates the following principle.

80. The product of two or more homogeneous expressions is
homogeneous.

Proof. If the homogeneous multiplicand is of the nth
degree, and the homogeneous multiplier is of the mth
degree, then each term in the product will be of the
(m 4 n)th degree; that is, the product will be a.homo-
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geneous expression of the (m + n)th degree; and so on for
any number of factors.

) When the multiplicand and the multiplier are homogeneous, that
fact should be noted in every case by the pupil ; and if the product
obtained is not homogeneous, it is at once known that there is an error.

Exercise 28,

Multiply :

® ® e oo R P

z+2y by «—2y. 10. —2+7 by —7.
2243y by 3z—2y. 11, —2—16 by —z+16.
a—3b by a+3b. 12. —z+21 by z—21.
2+ 7 by z—6. 13. 2a+4+3b by 3a+40.
3x—
22—4 by 2z+6. 16. ax—by by ax+ by.
2y+5b by 3y —4b. 16. 2’+z+1 by z—1.
2m*4+52% by 2m*—n®. 17. a’+ab+b* by a—b.
3m*—1 by 3m?'+1. 18. a®*—ab+ b by a+b.
19.
-+ 20.
21.
22.
23.
24.
265.
26.
27.
28.
29.
30.

7 by 20—1. 14. a—}b by fa—1b.

o — o'y +y* by o+ 3"

a®—ab+ b by a®+ab+ V2
a?*—2ar+42® by a®+2ax+ 4>
10a*+12ab+9%® by 4a—30.

a*c —ax® + 2 — a® by = +a.
?+z—2 by #*+2—6.
20*—3*+2x by 222 +32+ 2.
a*+2a+2ab® by a?’—~2ab+ 20
2 —3ay—y by —a'+ay+y>
P?—2xzy+y by 2+ 2xy 43>

27 2* — 36 az® +48 o'z — 64 a* by 3z +4 a.
ab +cd + ac + bd by ab + cd — ac — bd.
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31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.

48.

8L

Ex.

ELEMENTS OF ALGEBRA

-2y + 2y — P+ o by &+
-2 +y + 37+t —2ay° by P+ 22y + 9~
@+ +c2—bc—ca—ab by a+b+ec.
i 201 32" —1 by z4 1.
—ax’+ 3 axy® — 9 ay* by —ax— 3 ay’.
— Y+ Y+ Y+ —a by 2+
Ja+ja+}by pa—i
3 —2x+4 by 2+
jot+ay+3y° by fo—}u.
}ot—ja—4 by 42 +4o—1
$—ar—3%a’ by §2*—jar+}at
$arx+ 3+ 4a* by $al+§a°—§an
3o — 221442 by 22"+ S~ — 4™t
3ar3 42?2271 4o by 2273+ 324
4 o'z — a’%™ + 5 2" by o®2a™ 14623,
3a%? — a*'2® + a” by a’z*?—22*! — 3 az™*!,
Aotntl _3gim Qg f gl
by a1 — 2 g+ — gl

3(a+0)*—2(a+d)(x—y) —4(a+b)(z—y)*+T(z—y)*

by 2(a+b)'(z—y) —6(a+b)(z—y)*

Removal of signs of grouping.
Remove the signs of grouping, and simplify,
42 —5[—122—-8{— 162 +3(8 -7 —32z)}].

The expression =42 —5[— 122 —3{— 16z + 3(8z + 1)})

=42-5[—122—8{— 6z + 8}]
=42 -5[6z—9]
=87 —-302.
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Exercise 29.
Remove the signs of grouping, and simplify:
1. 3t—{ba—[6a+2(10—0d)]}.
2. a—(b—c)—[a—b—c—2{b+c})
3. 8(b+c)—[—ja—b—3(c—-d+a)i}
4. 2Bb—5a)—T[a—6{2— (5a-—-Dd)}]
6. 6fa—2[b—3(c+d)]}—4fa—3[b—4(c+d)]}.
6. 5{a—2[a—2(a+a)]}—4fa—2[a—2(a+2)]}.
7. —10fa—6[a—(b—c)]}+60§{db—(c+ a)}.
8. —3{—2[—4(—a)]}+5{—2[—2(—a)]}.
9. —2{—1[— @—y)]+{—2[-@—n]}
Multiply together the following expressions, and arrange
each product in descending powers of z:
10. ax’+4bx+1 and cz + 2.
11. ar®—2bx+3c and z—1.
12. 2’4+ ax®*—br—c and 2* —ax®— br+c.
13. a®—2*4+3x—b and a*+ 2*+3x+bh.
14, 2 —ax® — b’ +cx+d and 2+ ax® —bx* —cxr + d.

82. Multiplication by detached coefficients.

The labor of multiplication is lessened by using the method
of detached coefficients in the two following cases:
(i) When two polynomial factors contain but one letter.
Ex. 1. Multiply 423 — 322 +- 22— 5 by 622+ 3z — 4.
Writing coefficients only, we proceed as below :
4— 3+ 2—- b
5+ 83— 4
20— 15+ 10 - 26
+12—- 9+ 6-16
—16+12— 8+20
20— 3-16- 7-234+20

N
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Inserting the literal factors, whose law of formation is seen by
inspection, we have for the complete product,

2025 — 82t — 162 — T2? — 23 2 + 20.

(ii) When each of two polynomial factors is homogeneous
and contains only two letters.

Ex. 2. Multiply 5a* + 4a% — 8 ab® + 2% by a? — 202

6+4+ 0— 3+2 In the first expression, the term con-
1+40— 2 taining a2b? is lacking ; that is, its co-
—_— efficient is zero, which is written in
b6+4+ 0— 342 the line of coefficients. In the second
~10-8-0+6-4 expression, the term containing ab is
5+4—10—11+ 2+ 6 —4 missing; hence its coefficient is zero.
In the method of detached -coeffi-
cients, the zero coefficients must evidently be written with the other
coefficients.
Inserting the literal factors, whose law of formation is seen by
inspection, we have for the complete product,

6ad + 4a% — 10 a*b? — 11a%b® + 2 a?b* + 6 abb — 4 18,

Observe that the entire number of coefficients (zero coefficients being
included) in the product is one less than the number of coefficients in
both the multiplicand and multiplier together.

Exercise 30.
1. Multiply ©*+22*—2*+32x—1 by 2*— 22— 3.
2. Multiply 3a*+2a*—~5a+4 by 2a*—3a -2.
3. Multiply o8+ 52%y —4x* +39° by 225 — 3%y + 4
4. Multiply 3a®*— 2a'b —4a%® — ab* by a® — 2%
5. Multiply 4a* — 32% + Tay*+ 29 by 2+ 3%

-6. Rework by detached coefficients those examples in ex-
ercise 28, from 19 to 42, to which the method is applicable.



CHAPTER VI
DIVISION OF INTEGRAL LITERAL EXPRESSIONS

83. Division is the inverse of multiplication. Having given
a product and one factor, division is the operation of finding
the other factor.

That is, to divide one number by another is to find a third
number which multiplied by the second number gives the
first.

Thus, -12 + =—4; for —4 x 8 =-12,
and —12+(—8)= 4; for 4x(—3)=-—12

As in Arithmetic, the given product is called the dividend,
the given factor the divisor, and the required factor the
quotient. .

84, Law of quality. In each of the following identities
the third number multiplied by the second gives the first;
hence by definition the third number in each case is the
quotient of the first divided by the second.

*(ab) +*a=*b; ~(ab) +~a=7b; }
*(ab) +~a="b; ~(ab)+*a="0.

M

From identities (1) it follows that,

The quotient i8 positive when the dividend and the divisor
are like in quality; and negative when they are opposite in
quality.

The arithmetic value of the quotient is equal to the quotient
of the arithmetic value of the dividend by that of the divisor.

71
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Any number divided by *1 is equal to the number itself.
Any number divided by ~1 is equal to its arithmetically
equal opposite number.

Exercise 31.

Perform each of the following indicated operations:

1. —25+5. 5. 75+ (—25). 9. 21 +(—1).
2. 36+(—6). 6 —T72+(—6).  10. —36+4.
3. —51+(—3). 7. —105+(—21). 11. —1+3
4. —334(—1). 8 —144+24, 12. 14+(—9). -

Find the value of (z + y) <+ 2,

' 13. When z=—15, y=—3, z2=6.
14. When 2=—48, y=6, z2=—1.

Find the value of (z— g)+ (a +b),
15. When =22, y=—2, a=5, b=3.
16. When 2=—-21, y=6, a=—17, b=6.

86. From the definition of division we have
quotient x divisor = dividend.

That is, since the quotient of N divided by a is N + a,

we have
- (N+d)xa=N @)

86. The reciprocal of a number is 1 divided by that
number.

Since their product is + 1, any number and its reciprocal
have the same quality.

E.g., the reciprocal of 4 is }; the reciprocal of —4 is 1 +(—4)
or — }; and the reciprocal of — §is 1 +(— $), or — §.
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87. Dividing by any number except zero gives the same
result as multiplying by the reciprocal of that number.
That is, N+a=Nx1+a) (6]

" Proof. The second member of (1) multiplied by @ is,
by § 85, equal to N; hence it is the quotient of N divided
by a.

Ex. 1. 16+ 4=16x }=4.

Ex.2. 16+(—4)=186x(—-P=—-4.

88. The commutative law for division.
CEx 1l —40+(—2)+(—b6)=—40 x (= Px(—P=—4 (1)
Ex.2. $+(—H+(-D=#x(-Px(-H=% (@)

Since we can change the order of the factors in the second member
of either (1) or (2), we can also change the order of the divisors in
the first member of either identity ; this illustrates that,

The commutative law holds for division as well as for
multiplication, provided the sign of operation, + or X, before
each number 18 transferred with the number itself.

-

That is, Nxbrc=N+cxb. 1)
Proof. Nxb+c=Nxbx@Q+o § 87
=NxA+c¢)xbd § 49
=N-+c¢cxb § 87

Ex. (—-60)x(—22)+(—15)=(—60)+(—156)x (—22)
=4 x(—22)=-88.

89, A product of two or more factors is divided by a num-
ber if any one of the factors is divided by that number.

Proof. (ab) +c=a+cx b= (a+c)d, § 88
or (@) +c=b+cxa=(0+oa § 88
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90. Any indicated quotient is called a fraction.

A quotient is often indicated by placing the d1v1dend
over the divisor with a line between them.

Eg,a+b 2% ) and a/b are but different ways of indicating that

a is to be divided by b.

Each of these expressions is a fraction, a being the dividend, and
b the divisor. The dividend and divisor of a fraction are often called
its numerator and denominator respectively.

‘When the dividend or divisor consists of more than one
term, the horizontal dividing line in a fraction serves as a
sign both of division and of grouping.

E.g., in the fraction ¢ g the horizontal dividing line takes the

+
place of both the sign of division and the two parentheses in the form
(a—b)+(c+ad),or(a—>d)/(c+d).

In § 1 any fractional number as 5/6 was regarded as
(1/6) x 5; but it can also be regarded as 5 + 6; for

N+a=Nx1+a)=(1/a)x N. §§ 87,49
91. The product of two or more fractions is equal to the

product of their dividends divided by the product of their
divisors; and conversely.

That is, )—‘:; ;Eﬁ. @
Proof. —~—.§-w Y zsg-awgoy-g.z § 49
_[a b c
=G oG oGy s
= abe. §8

Dividing each member by xyz, we obtain (1).

4 3 -2 ——(4x3x2)_
Ex. -—-x——x
-6 -8 —(bxT7x8) 35
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92, Quotient of powers of the same base.
Ex. 1. a® +~a2=a’2=ad; for a® X a?=ab.
Ex. 2. " +a®=a"?=da!; for a*t X a®=d".

These examples illustrate the following law :

If m > n, the quotient of the mth power of any base divided
by the nth power of the same base is equal to the (m — n)th
power of that base; and conversely.

That is, am + a"=am".

Proof. a~ "t xart=agrtr=a", § 76, 83

Ex. 1. Divide 20a*b® by —5abd.
20 a'dS _ 20 at

bs
=20 a B o1
—bab® —b a b .5
=—4a’2 §§ 84, 92
Ex. 2. Divide — 6a%%2 by 11 a3%s?.
—baltd_—5 o bt 2 §o01
11a%%2 " 11 a2 b2 23

=—{r-1.02.2=— £ d%.
These examples illustrate the following section.

93. The quotient of one monomial by another. By the con-
verse of § 91 we have the following rule:

Divide the numeral factor of the dividend by that of the
divisor, observing the law of quality; after this write the quo-
tient of their literal factors, observing the law of exponents.

Ex. 1. —84ab28+ 12 atz=— T ax?

Ex. 2. 77 a¥%3yt + (=17 az%y) =— 11 axy®.

Check. Multiplying the obtained quotient by the given divisor, we
obtain the dividend ; hence, the division is correct.
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Divide: Exercise 32.

1. —72a® by —9a. 6. 84 2% by —T zy’2

2. 84a® by —Tat 7. .28 a'b® by — 4 a®b.

3. —352® by T4 : 8. —35a%® by 5ab.

4. 4% by — ab’c® 9. —162%® by —4 ayt

5. —12a%°%® by —3a'dbc® 10. 36 m¥* by 9 m®?’.
11. 96 a's®#* by 12 a®°22.
12, — 256 a%y%" by — 8 aty®s.

13. 84 a%'¢ by 14 ab®c. 16. —144a"2® by — 24 '
14. —16 b'yx® by —2 ay. 17. — 3z by 5a™*.
15. 50 ’2® by — 5 aPy. 18. —4 g™ty by T amy™

19. 52y by — 82y

20. — 72 ly™2 by — 2 2rlymt,
21. —42a+%™! by — 7™ %a™2
22. — 50z tey™t by 25 xrdym—e,

94. Distributive law for division. The quotient of one ex-
pression divided by another i3 equal to the sum of the results
obtained by dividing the parts of the first expression by the
second; and conversely.

Thatis, otbo+e+--_a b c, ("
X X X X
Principle (C') lies at the basis of division in Arithmetic; e.g., to
divide 804 by 6 we separate 894 into the parts 600, 240, and 54, divide
each of these parts by 6, and add the results.
Thus 894 _ 600, 240 , 54 _

o ‘T+T+F‘l°°+4°+9=m‘
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Proof. '-H'b—'*:ﬁls(a+b+c+---)i T §87
Eal+b1+cl+... § 60
z z =z
=840, ... §87
z z =z

95. To divide a polynomial by a monomial.

By the distributive law for division, in § 94, we have the
following rule:

Divide each term of the polynomial by the monomial, and
add the resulting quotients.

Ex. 1. Divide 1228 — 6 ax? — 2 a%x by 3 z.
1228 —6ar® —2a%_122%  —b6ax? , —2a%

Sz _Sz+ 8z + Sz §o4
=4z—§ax— §ad
Ex. 2. Divide 12a®*+ 9at —6a® by —3 a3
) 12a® +9at—6a5__ 1248 9 at —6af
—3a? '——3a“+-—8¢x’ —3a? §94
=—4a-3a%+2a8
Exercise 33.

Divide:

1. 58*—Tar+42 by . 6. —24a°—322 by —84°
-T2+ 4o by 2 7. a®—a’—a’? by o
102"—84a*+32* by «*. 8. a’—ab—ac by —a.
272*—362° by 92 9. 2y—a*—ax by —u=.
152°—252* by —52% 10. 32*—92%® by —3=.

11. 4a'%*—8a’’+ 6 ab® by —2ab.
12. —32°+32y—6x2 by — 4}«
18. —§2+faoy+2x by —§a.
14. } Py -3y — 5% by —§

oos W
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156. }a’z— Jg abx — § acx by § ax.

16. —2a%*+ % a'z* by {a’s.
17. 26(z+y)’—3a(@+y)’+10b(z+y) by 5(z+).
18. —8(a—b)*—12z(a—0b)*—16y(a—>b)® by 4(a—0)*
19. 6a*™—4a™ by 2a~
20. 10y —15y+%* by — 5y

Divide 12 a®+1yt — 16 z**+%® — 20 a™+%f by:
21. 4z 22. —artlR

23. —8a™y. 24. ot
25. Divide 4 22+ly* — 16 x™+%e+! by 4a™pe,
26. Divide — 152*+y*3 4 21a*+%ys+ by 3zbtlyets,

96. To divide one polynomial by another.
Let it be required to divide

2223 — 28y + 2t — 2y + y* by 2 — 2y + 23

First arrange dividend and divisor in descending powers of z, for
convenience placing the divisor to the right of the dividend as below :

ot — 2%y + 2 2%% — 2y® + ¥t |22 — zy + y? Divisor

ot — 23y +  x%? x4 2 Quotient
’ 2P — 2y + oyt
x%y? — Yt 4+ ot

From the law of exponents we know that x4, the term of the highest
degree in z in the dividend, is the product of the terms of highest
degree in the divisor and the quotient; hence, the first term of the
quotient is z* + 22, or z3. Multiply the divisor by #? and subtract the
result from the dividend.

The remainder, x2y? — x2y® + ¥4, is the product of the divisor by the
other terms of the quotient ; hence, z%32, the first term of the remain-
der, is the product of the first term of the divisor and the second
term of the quotient. Therefore the second term of the quotient is
x%? + 23, or 3. Multiplying the divisor by 2 and subtracting the
result from 2%?2 — xy® + y*, we have no remainder.

Hence the required quotient is 22 + y3.
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Observe that by the above process the dividend was separated into

the two parts z* — 23y + z%3 and 232 — zy‘+y‘, hence, by the distrib-
utive law for division, we have

R R L ket o o et s Bt e e et ud
o —xy + T B-my+y? -zt
=z + 9%
If the dividend and divisor were arranged in ascending powers of z,
the quotient would be obtained in the form y? 4 3.

Hence, to divide one polynomial by another, we have the
following rule:

Arrange the dividend and divisor in descending powers of
some common letter.

Divide the first term of the dividend by the first term of the
divisor, and write the result as the first term of the quotient.

Multiply the divisor by this first term of the quotient, and
subtract the resulting product from the dividend.

Divide the first term of the remainder by the first term of
the divisor, and write the result as the second term of the
quotient.

Multiply the divisor by this second term of the quotient, and
subtract the resulting product. from the remainder previously
obtained.

Treat the second remainder, if any, as a new dividend and
go on repeating the process until the remainder is zero, or is
of a lower degree in the letter of arrangement than the divisor.

Ex. 1. Divide 2a —4a2+8a2—1by 1—a.
Arranging dividend and divisor in descending powers of a, we have

8a3—4a%+2a—-1 |—a+1
8a®—8a? —-3a+a—
— a%+2a
- &+ a
a-—-1
a-1
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Ex. 2. Divide 2%?2 + 2* + y* by 32 —zy + 2%
Arranging dividend and divisor in descending powers of z, we have

zt + 2% +yt |-+
ot — xdy + 23 2+ oy + B
8y
oty — 2% + zy?
2y —ay’ + o
2y — 2y’ + o
Ex.'38. Divide 16ag*—1 by 2a — 1.
16 at -1 [2e-1
16 a* — 8 a3 |8a*+4a%+2a+1
8ad ’
8at—4q?
4aq?
4a3—-2aq
2a-1
2a—-1

Exercise 34.
Divide:

1. ?+32+2by +1. 4. 322+102+3 by 2+3.
2. a?—11a+30 by a—5. 5. b2+ 11z+2 by o+ 2.
3. ¥—Tx+412 by z—3. 6. 522416243 by 24 3.

7. 2224+ 11245 by 2z+1.

8. 2224+172+21 by 224 3.

9. 4224-232+15 by 42+ 3.

10. 62*—T7x—3 by 22—3.

11. 120 —Tax—124 by 3a—4a.

12. 15a*+4+17ax— 442 by 3a+4a.

13. 12a*—11ac—36¢* by 4a—9c.

14. 602®—4ay—45y° by 102 —9y.




15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

33.
+TY
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—42y—154824+962° by 122 —5y.
1002 —32z—132* by 3+ 252.
16— 96242162 — 216 2° + 8124 by 2—3a.
P8 —95—12 by 2+ 35+ 3.
2y —-3y"—6y—1by 29 —5y—1.
6m*—m*—14m+3 by 3m*+4m—1.
6a’—13a*+4a*+3a® by 3a*—2a’—a.

P+ +T2*—62+48 by 2*+22+8.

a*—at—6a*+15a—9 by a*+2a—-3.
a*4+6a*+13a’+12a+4 by a*+3a+2.

200 —2*+45°+42—3 by #*—2+3.
P—544928—62"—242 by #*—32+2.
2*—4224+322+322—-32+2 by 2*—z—2.

30 +112°—822— 122+ 48 by 22—4 4322
69y —18 —714*4+284y*—35y® by 4y*—13y 6.
6K — 15 +4K°+ T2 —Tk+2 by 38—k +1.
288 —8z+4+2*+12—T2 by 2*4+2-3a.
P?—2—T24+192*—102 by 2 —Tz+5.
142t +452°%y + 82 + 45z + 149* by 222+ by

8. P+ay— 2y +2 -2+ by 2+ ay—yt

35.

36.

F—=2yM TPy —Tay? +142%° by 2 —24°
a4+ 0¥+ F—3abe by a+b+c.
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a®—8abc+ b8 +c|la+b+c
a®+ a? + a’% a?—ab—ac+ b2 —bc + 2
— a3 — a% — 3 abc + b® + 3
— a%h — ab? — abc
— a% + abd? — 2 abc + b3 + 8
— a¥c — abc — ac?
ab? — abc + ac? + b8 + 8
ab? + b8 + b%
— abe + ac? — bl + ¢
— abe — bic — be?
ac? + be + ¢
ac? + bc? + c®
Here we arranged the dividend and divisor in descending powers of
a, and gave b precedence to ¢ throughout.

37. B+ —22+3ayz by 24 y—2.

38. 82— P42+ 6ayz by y—2—22.

39. 2Ta*—8b®+c+18abc by 3a—2b+c¢

40. a*+3a®b+3ab?+ b0+ by a+bd+ec.

41. a*+ b+t -2 —2a*—2a%’ by a+b+c.
42, 12+ Aoyt + 7o by do 4.

43. }d®—%a*%r+23lax’— 272 by a—3a.

4. Lot —Hatt+ha—g by ta—1.

45. §a’c?+ 13za’® by ta*+}ac.

46. fa'—%a'—%a’+4a+ 3t by §a’—§—a.

47. 36°+}y*+1—42y—62x+3y by 62—3y—1.
48. A a*—$4par* by $a—3§2

49. 43214 62™1 292 — 202™2 by 22" — 5™

6 22w+l — 20 2% 4 43 g2m—1 — 20 x2m—2 | 2 gm — b gm-1
6 x2w+1 — 15 z2» Samtl — T g™ 4 4 gm-)
— 14 22» 4 43 x2m—1
— 14 22 - 35 z2m-1
8 x2m—1 _ 20 z2m—2
8 z2m—1 _ 90 xim—2
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50. ' — 2y™ 4 2"y — o' by 2> —y™
'51. 6a*—25a™+27a"—5 by 2a"—35.
52. 6a™—11a*4+13a™ 4+ 23a*+2—34a" by 3a™+2.
53. 122"+ 82 —452~1 4252~ by 62— 5.
54. 1pa*—1}iab+9ac+ 20— bc by §a—3b+4ec.
55. (b+c)a*—bex+a*—be(b +¢) by «*—be.
56. @*+ (@ +b+c)2* + (ab + ac + be)x + abe by =+ b.
57. @+ (a+b—c)2*+ (ab—ac—bc)z—abec by z—c.
97. When, as in each example given above, the division
is exact, the quotient is the same whether the dividend
and divisor are arranged in descending or in ascending
powers of any common letter. But when the division is

not exact, the partial quotient obtained with one arrange-
ment is not the same as that obtained with the other.

Eg., 2+, 142

= % . 1

z+1 z+1 M

1+22_, 28— g8 4 22 2

while l+z—l z 4223 2z‘+l+x @)

Here the partial quotients z —1 and 1 — z + 222 — 223 are evi-
dently unequal. The entire quotients, or the second members of (1)
and (2), are, of course, identical.

In (1) the remainder is of a lower degree than the divisor.

In (2) the division can be carried to any number of terms.

When arranged in ascending powers of some common
letter, an expression of a lower degree can be divided by
one of a higher degree in the letter of arrangement.

1 ;_=_1+z+x’+z3+...+z~—l+__‘”“_.
z 1—2

E.g., IT
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Exercise 35.
Divide: .
1. Z4+y*byz+y. 5. —a*byz+a ’
2. 24+y¥byz—y. 6. 1 by 1+ 2 to 4 terms.
3. 2—yPbyz+y. 7. 14+ 2by 1+ 2*to 5 terms.
4. ?+y'byz+y. 8. 14+2zby1— 3« to4 terms.

9. Divide 2 by 1 4-# and thus reduce the second member
of identity (1) in § 97 to the form of the second member
of (2).

98, Zero divided by any number, except zero, is equal to
zero.

That is, when a+0, 0-'-'a=0 §§ 85, 74
Conversely, if a quotient i3 zero, the dividend s zere.

Zero as divisor will be considered in Chapter XXVII.
Prior to that chapter it will be assumed that any expresswn
used as a divisor does not denote zero.

99a. Division by detached coefficients. In § 82 we considered
two cases in which the work of multiplication could be shortened by
using the method of detached coefficients. In the same two cases the
labor of division can be lessened by using detached coefficients and an
arrangement of terms known as Horner’s method -of synthetic division.
This method is illustrated by the following examples : -

Ex. 1. Divide 225—7x44+223—32—62+20 by 223—323+42-5.
-2]12 -7 +2 — 1 — 6 + 20 Dividend

)

g8 8 3 -4 6 @ -
'85 4 -6 +8 —10 (2)
= 5 —12 +16. —20 )

Quotient 1 -2 -4 0 0 0 Remainder
Inserting in the quotient the literal factors, whose law of formation
is seen by inspection, we have for the complete quotient 22 — 2 x — 4.

Ezxplanation. The modified divisor, or the column of figures to the
'eft of the vertical line, consists of the coefficients of the divisor, the
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quality of each coefficient after the first being changed; this change
of quality enables us to replace the operation of subtraction by that of
addition at each successive stage of the work.

Observe that the number of coefficients in the quotient will be one
more than the number of coefficients in the dividend minus the num-
ber of coefficients in the divisor, in this case 1+ 6 — 4, or 3 (§ 82).
Thus, the numbers to the left of the vertical bar are the coefficients of
the quotient, and those to the right of this bar are the coefficients
of the remainder. .

Dividing the first coefficient of the dividend by the first coefficient
of the divisor, we obtain the first coefficient, 1, of the quotient. Multi-
plying the modified coefficients of the divisor (3, — 4, 6) by this first
coefficient of the quotient, we obtain line (1).

Adding the coefficients in the second column to the right of the
divisor, and+dividing the sum by .the first coefficient, 2, of the divisor,
we obtain — 2, which is the second coefficient of the quotient. Multi-
plying the modified coefficients of the divisor by this second coefficient
of the quotient, we obtain line (2).

Adding the coefficients in the third column and dividing the sum
by the first coefficient of the divisor, we obtain the third, or last,
coefficient of the quotient. Multiplying the modified coefficients of
the divisor by this third coefficient of the quotient, we obtain line ().

Lines (1), (2), and (8) are evidently the coefficients of the three
partial products obtained by multiplying the divisor by each term of
the quotient, the first termn of each product being omitted and the
quality of the others being changed.

Hence by adding each .of the vertical columns after the third, we
obtain the coefficients of the remainder.

Here the coefficients are all zero, and the division is exact.

Ex. 2. Divide 22%—7 z5y+12 z*y?—8 2%y%+ z%* by 233—3:c’y—y"..

202 -7 +12 —8 +1 40 +0 [¢))
3 +3 0 +1 )
0 -6 0 -2 )
1 +9 0 +38 - “) .

+8 0 41 (6)

0 1..—-2 + 8 +1|+2 +3 +1
Inserting the literal factors, we have for the guotient 23 — 22%
+ 3zy? + 9, and for the remainder 22%* + 3 xy® + 1o,
. Ezplanation. The terms in zy5 and 3° are missing in the dividend,
and the term in xy? in the divisor; hence their zero coefficients are
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written with the other coefficients. The sums of the vertical colamns
after the fourth give the coefficients of the remainder.

To find the remainder after one term of the quotient, add lines (1)
and (2) after the first vertical column; to find the remainder after
two terms of the quotient, add lines (1), (2), and (38) after the first
two vertical columns ; to find the remainder after three terms of the
quotient, add lines (1), (2), (3), and (4) after the first three vertical
columns.

Exercise 36.
1. By detached coefficients divide #*—4a2*+ 22’ + 42+ 1
by 2’ —22—1.
2. By detached coefficients perform the division in ex-
amples 22, 26, 27, 30, 32, 33, 34, and 36 of exercise 34.

99 b, If A denotes any expression in x, the value of 4
when ¢ is substituted for « is often denoted by [4]., or 4],
read ‘A4 when x =¢’ We use one bracket, as A], only
when the expression 4 is a monomial.

Eg., 8],=2=8, [2?—22];=62—2.5=16.

Also [428 — 322 - 4], =4c>—8c2—4. °

Ex. 1. Prove [323—2],=10; [623—7z]s=114.

Ex. 2. Prove [62—T]s=[22z+ 2]s; [2/3 + T]e=[2/2 + 6]e.

Hence, by § 17, 3 is the value of X in the equation 5z —7T=2z 4+ 2,
and 6 is the value of X in the equation z/3 + 7=12z/2 + 6.

Let A and B denote any two non-identical expressions in
x; then, if A).= B], c is a value of x in the equation
A=B (§17). Conversely, if e is a value of « in the equa-
tion 4 = B, then 4], = B]..

E.g., [22 —3)4=[82 — 7]4; hence, by § 17, 4 is a value of z in
the equation 2x —8 =8x — 7. If 6 is a value of z in the equation
5z — 7 =32+ 10, then we must have [6x — 2]¢=[3z + 10]e.

Ex. 4. Prove that — 2 is a value of z in the equation

1/(z+4)+2/(x+6) =3/(x+5).

Ex. 5. Prove that either b or 2 a—b is a value of z in the equation

22 +2ab=10b*+2ax.



. CHAPTER VII
INTEGRAL LINEAR EQUATIONS IN ONE UNKNOWN

100. An integral equation is an equation all of whose terms
are integral in the unknown. (Review §§ 10, 15-17.)

Eg.,22*+3=22z and %’+“—:=z+2mintegmlequations.

101. The degree of an integral equation in one unknown
is the degree of its term of highest degree in the unknown.

A linear equation is an equation of the first degree.

A quadratic equation is an equation of the second degree.

A higher equation is an equation of a higher degree than
the second.

E.g., 3z +1=4and az + b =0 are linear equations in z.
622 — 7z =1 and ax? + bx + ¢ = 0 are quadratic equations in z.
628 — 422 4+ 8z + 4 =0 is a higher equation in z. :

102. A root, or solution, of an equation in one unknown is
any value of the unknown ; that is, it is any number which
when substituted for the unknown renders the equation an
identity (§ 17).

E.g., 12 is a root of the equation

- 2x—b=2+1.

For, putting 12 for z in the equation, we obtain the identity
24 —5=12+ 1.

Any root of an equation, since it satisfies the condition
expressed by the equation, is said to satisfy the equation.
87
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103. To solve an equation in one unknown is to find all
its roots. In solving equations we use the principles of

EQUIVALENT EQUATIONS.

104. Two equations in one unknown are said to be equiv-
alent, when every root of the first is a root of the second,
and every root of the second is a root of the first.

E.g., the equations
4z—-8=2-2 (¢))

and - bx=10 - L (?)

have the same root, .., are equivalent; for 2 is a root of each equa-
tion, and, as will be seen later, 2 is the only root of either.

In solving equations we need to know what operations.on
the members of an equation will make the derived equation
have the same root, or roots, as the given one.

Of such operations the most elementary and important
are found in §§ 105, 106, 108, 109.

105. Identical expressions.
If in the equation )
4(z—1)—(82—2)=8, [¢H)

we substitute for the first member the identical expression a: — 2, we
obtain the equivalent equation

z—2=38. ’ (25

For, as is easily shown, b is a root- of either equation ; and, as will
be seen later, 5 is the only root of either.
This example illustrates the following principle :

If, for any expression in an equation, an identical expres-
sion s substituted, the derived equation will be equivalent to
the given one.
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That is, if A= B denotes any equation in one unknown,

as z, and 4= 4'; then the equations

A=B @
and . A=B - - @)
have the same root, or roots.

Proof. To prove that equations (1) and (2) have the same
root, or roots, we must prove that every root of (1) is a root
of (2); and conversely that every root of (2) is a root of (1).

Since 4 and A'are identical expressions, any value of «
which when substituted for « will make either one identical
with B, will make the other identical with B (§ 32).
Hence, any root of (1) is a root of :(2), (§ 102), and con-
versely any root of (2) is a root of (1); that is,. equa,tlons
(1) and (2) have the same roots, .e., are equivalent.

E.yg., since, S3z—-1)—-8z—(2+z)}=2—1;
the equations 3(x—-1)-8z~(2+2)}=5 (¢))
and . z—1=5% * @)
have the same root ; that is, we neith;ar lose nor introduce a root by

substituting for 3(:: -1)-— {3 z —(2 + x)} in equation (1) its identical
expresslon z-—1.

’ 106. ‘Addition or subtraction.
If to both members of the equation
' 2z-8=T7-2 m
we add 8 + z, we obtain the equivalent equation )
8z =16.

For, as is easily shown, b is a root of each equation ; a.nd as will
be seen later, b is the only root of either equation.
This example illustrates the following principle :

. If identical expressions are added to, or subtracted from,
both members of an equation, the derived equation will be
equivalent to the giyen one.
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That is, if M = M', the equation

A=B @
has the same root or roots as the equation
A+ M=B+ M @)

Proof. Let cbearoot of (1); then 4],.=B].. §§ 990,102
Now M}, =M'].; .. A.+ M].=B].+ M'].. §32,(iii)

Hence, by § 102, ¢ is a root of equation (2); therefore
any root of equation (1) is a root of equation (2).
Conversely, let e be a root of (2); then, by § 102,

A4, + M],=B), + M"),
Now M],= M'],; .. A],= B). § 32, (iii)

Hence e is a root of (1), and any root of (2) is a root of (1).
Therefore equations (1) and (2) are equivalent.

If, to each member of the equation

ax —b=cx—d, [¢))
we add — cx and + b, we obtain the equivalent equation
ax—cx=>b-—4d. (2)

Adding — ¢z to both members of equation (1) removes the term
.+ cx from the second member, and transfers it, with its sign changed
from 4 to —, to the first member. Likewise, adding + b to both
members of (1) removes the term — b from the first member, and
transfers it, with its sign changed from — to +, to the second member.
This example illustrates the following important application of the
principle proved above.

If any term is transposed from one member of an equation
to the other, its sign being changed from + to —, or from —
to +, the derived equation has the same root or roots as the
given one.

107. An expression is said to be unkrown, or known, ac-
cording as it does, or does not, contain an unknown number.

E.g., if z is an unknown number, z — 2 is an unknown expression ;
if @ is a known number, 9 + 5 a is a known expression.
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108. Multiplication.
If both members of the equation

3_ 13
3 5t 173 3t 12 O
are multiplied by 12, we obtain the equivalent equation
6z+9=42+13. (2)

For, as is easily shown, 2 is a'root of each equation, and as will
be seen later, 2 is the only root of either.
This example illustrates the following principle :

If both members of an equation are multiplied by the same
known expression, not denoting zero, the derived equation will
be equivalent to the given one.

That is, if K represents any known expressmn, not denot-
ing zero, the equation

A=B @

has the same root or roots as the equation
A-K=B-K. _ @
Proof. Let ¢ be a root of (1); then 4], = B].. § 102
Multiply by X, A].-K= B].-K. § 32, (iv)

Hence c is a root of (2), and any root of (1) is a root of (2).
Conversely, let e be a root of (2); then

A),- K= B),- K.
Divide by K, 4}, = B]. § 32, (v)

Hence e is a root of (1), and any root of (2) is a root of (1).
Therefore equations (1) and (2) are equivalent.
Observe that K does not contain the unknown.

Ex. 1. Solve the equation (bz — 12)+ 6 =(z — 8)+ 3. ()]
Multiply by 6, bx—12=2z—86. (2
Transpose terms, bx—2x=12—6. 3
Unite terms, 3z=86. ()

Multiply by 1/3, z=2. )
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Proof of equivalency.

Equation (2) has the same roots as (1) by §108, ¢identical ex-
pressions.’ '

Equation (3) has the same roots as (2) by § 106, ¢addition.’

Equation (4) has the same roots as (3) by § 105, ‘identlcal ex-
pressions.’

Equation (6) has the same roots as (4) by § 108, ¢ mu]tlplicatlon !

Hence the one and only root of each of these equations.is 2.

* Ex. 2. Solve t.he equat.xon z 1' 1_ 5;—1 =1L a
Multiply by 12, B+ —4@—-1)=12 N ¢))
Remove ( ), Sx+8—4x+4=12 3
Transpose terms, 8z—-42x=12-3—-4. “4)
Unite terms, —z=5. o ®)
Multiply by — 1, : z=—"5. (6)

Proof of equivalency. Equation (2) has the same roots as (1) by
the principle of ¢ multiplication® (§108); (3) as (2) by ‘identical ex-
pressions’ (§ 105); (4) as (3) by ‘addition’ (§ 108); (6) as (4) by
¢identical expressions’ (§105); and (8) as (5) by *multiplication’
(§108). Hence the one and only root of each of these equations is —5.

The two following applications of the foregoing principle
are very important:

(i) When, to clear an equation of fractional coefficients,
we multiply both members by the L.C.M. of their known
denominators, the derived equation has the same roots as
the given one.

(ii) When the sign before each term of an equation is
changed from 4 to —, or from — to 4 (that is, when each
member is multiplied by — 1) the derived equation has the
same roots as the given one.

109. Roots introduced or lost.
If we multiply both members of the equation
3z—-T=22z+2 Q).
by the known expression 0, we obtain the identity .
Bz—-T)x0=2z2+2)x0. @)
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. Observe that () restricts z to the one value 9, while (2) does not
restrict the value of z at all. .
Again, if we multiply both members of the equation

6z—-1=42+38 (3
by the unknown expi-eséion z — b, we obtain the equation
Bz—-1)(x—-6)=4zx+3)(z—5). “4)

Equation (4) has the two roots 2 and 5, while (3) has only the one
root’ 2. Hence, the root 6 was introduced into (4) by multiplying
(8) by the unknown expression z — b.

‘The two examples above illustrate why the multiplier in § 108 was
limited to a known expresslon, not denoting zero.

If we divided identity (2) by 0, we would obtain equation (1).

If we divided equation (4) by z — 6, we would obtain equation (8),
and one root would be lost by the operation.

This illustrates why -the divisor in the following article is limited to -
a known expression not denoting zero.

110. Division. If both members of an equation are divided
by the same known expression, not denoting zero, the derived
equation will be equwalent to the given one.

That is, if K represents any known expression, not denot-
ing zero, the equation

A=B @)
has the same root or roots as the equation
A/K= B/K. #))

Proof If we multiply both members of equation (1) by
the constant 1/K, we obtain equation (2).

" ‘Hence, as' 1/K is a constant not zero, by § 108 equation (2)
is equivalent to equation (1).

Or, multiplying equation (2) by the constant K we obtain
equation (1). . Hence,-as K is a constant not zero, by § 108
the two equations (1) and (2) are equivalent.

Observe that, since dividing by a number gives the same
result as multiplying by its reciprocal, § 108 includes § 110
as a special case. . .
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Ex. 1. Solve the equation (z — 1)(z —2) + 6= (xz + 1)% Q)
Remove ( ), 22—-8z+246=22+224+1. (2)
Transpose terms, -82z—-2x=1-2-5. ®3)
Unite terms, —bx=-—86. “4)
Divide by — 6, z=4. ®)

Proof of equivalency. No root is lost or introduced by any one of
the operations performed on the members of the equations from (1)
to (6); hence, the one and only root of (1) is §.

Ex. 2. Solve83(z—1)— {8z — (2 — z)}'=5b. ¢))
Remove ( ), 82-8-8z+2—-2=5. @
"Transpose, 832—-82z—z=5+3-2 3)
Unite terms, —z=86. “4)
Divide by — 1, z=-—06. (6)

Proof of equivalency. No root is lost or introduced by any one
of the operations performed on the members of the equations from
(1) to (5); hence, the one and only root of (1) is — 6.

Observe the difference in the meanings of equal, identical,
and equivalent. Equal applies to numbers, identical to ex-
pressions, and equivalent to equations. Two numbers are
equal or unequal, two expressions are identical or not iden-
tical, and two equations are equivalent or not equivalent,
i.e., have or have not the same roots. We should not apply
the word equivalent to numbers or expressions.

111, From the examples given above, it will be seen that
the different steps in the process of solving a linear equa-
tion are the following:

(1) Clear the equation of fractions, if there are any.
(ii) Remove parentheses, if there are any.

(iii) Transpose the unknown terms to one member of the
uation, and the known terms to the other member.
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(iv) Unite like terms, and divide both members by the co-
efficient of the unknown.

Nore. In order to form the habit of clear and accurate thinking,
the pupil should at first state the operation by which each equation is
derived from the preceding one, and note whether by this operation
any root is lost or introduced.

But as he advances he should perform the simpler steps mentally,
and apply two or more principles at the same time.

112. A numeral, or numerical, equation is an equation in
which all the known numbers are denoted by numerals.

Hxercise 37.

Solve each of the following numeral equations:
3z—5=2z+1 8. 2—(4—-22)=T(x—1).
3zx+4=2+8. 9. 54—-32)=7B8—402).
4dax—4=2-T. 10. 4(1—2)+3(2+2)=13
Te—b=2—23. 1. 3(zx—2)=2(x—3).
8z+4+42=5= 12. 22— (b2z+5)="T.

I G o A

15.
16.
17.
18.
19.
20.
21.
22.

50—-12=6x—38. 18. 3(x+1)=—0(x—1).
Te+19=52+47  14. T(x—18)=3(z — 14).
2@—2)+3(@=—3)+4(z—4)—20=0.
2@—1)—-3=x—2)+4(=x—-3)+2=0.
524+6(x+1)—T(x+2)—8(x+3)=0.
22—[3—§{42+(x—1)}—5]=8.
(@—1)(z—2) = (x + 3) (z — 4).

3B =(z+10+ (z+2)*+ (x+3)"
@E—=2)x—5)+@—3)(z—4)=2(x—4)(x—5).
5@+1)7+7(@+37=12(x+2)%

23. @w—1)(z—4) =22+ @—2)(x—3).
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24.
26.
26.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
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z/b—x/4=1. 27. 22/3+5=52/6+4.
(z—1)/24(x—2)/3=3. 28. x/2+4+2x/3=5x/6+T.
22/3+4=5+x/3. 29. 3x/4—5=T2/8—6.
12—-2)—31(br+21)=2+43.

e+ D+3@+2) +1@+4) +8=0.
1@E=5)—{@-H=4@E=-3)—(@-2)

1@+ -§Ce—-H+1=0.
Bz+5)/8—(21+42)/2=5z—1b.
=—2)/3—(12—2)/2=(b=z—36)/4—1.

(@+8)/4— (B +2)/3=(14—2)/2—2.

@—15)/4 — (T —22)/21 =3 /14 +1/2.
5[4 — (3 —1)]=6(x—11) +49.
(z—2)/4+1/3—[2— (22—1)/3]=0.
34 [28 — (/8 +24)] = 3} (2} + 2/4).
532—5)—17=8(32—b5)—2(3z— b).

Combine the terms involving 3z — 5.

42.
-43.
44,
45.
46.

2@+1)—3@+1) +9@+1)+18=T(x+1)..
2(@+2) +z@+1)=QCz—1)(@+3)
?—2z[l—2—-2@B—-2)]=z+1. »
3(w—1)/16 — 5 (z —4)/12 =2 (& — G6)/5 + 5/48. -

0524376=525x—1.

To clear of fractions multiply by 4.

47.

2.25 x — 0125 = 3« + 3.75.

48. 0.202+4—-0375x=022—9.

49.
50.

0.375 # — 1.875 = 0.12 = 4 1.185.
0152+ 1.2 — 0.875 & + 0.376 = 0.0625 «.
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113, A literal equation is an equation in which one or
more of the known numbers are denoted by letters.

Eg,ax+22+4=0 and ar + b = cx are literal equations,

Ex. Solve the equation (2 —~ 6x)/a = (cz + 7)/d. (¢))
Multiply by ab, @—-5z)b=(z+T)a )
Remove ( ), 2b—b6bx=acx+17a. 3)
Transpose, —bbx—acx=Ta—~2b. “)
Unite terms, —Bb+ac)yz=Ta—2b. (6)
Divide by — (5b + ac), z= %- ()

Proof of equivalency. No root is lost or introduced by any one of
the operations performed on the members of the equations from (1)
to (6); hence, the one and only root of (1) is given in (8).

114, Any linear equation in one unknown has one, and only
one, root.

Proof. By transposing and combining terms, any linear
equation can be reduced to an equation of the form

ax=c, . . . (1)
which, by §§ 105, 106, is équiv;alent to the given equation.
Divide by a, z=c/a. ()]

Equation (2) is equivalent to (1) by § 110 ; hence, c¢/a is
the one and only root of equation (1), or of the given linear
equation.

If ¢=0 and a =+ 0, the root c/a is zero (§ 98).

If ¢+ 0, then the smaller a is, the larger arithmetically
is the root ¢/a.

Observe that, if b is an arithmetic number, the linear
equation z —b=0 has the arithmetic root b, while the
equation z 4+ b =0 has no arithmetic root.
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Exercise 38.

Solve each of the following literal equations:

1.
. 2fa+x/b=c. 4. 2@—a)+3(@—2a)=2a.

2
b
6
7.
8
9

11.
12.
13.
14.
15.
16.

az + b*= bz + a® 3. (a+d)z+(b—a)z="0%

. (@a+d)z+(a—d)r=ad
. (a+ b2z) (b + az) = ab(z*—1).

(@—2)(@@a+a)=2a*+2ax— 2

.d@+a+d)+i(@+a—b)=0.
. d@+2)+32a+2)+3(Ba+2a)=3a.
10.

za+b4ab+a=a4+0%

(a + b2) (b + az) = ab (2 + 1).

(a® 4+ @) (b* + ) = (ab + @)
@+a+d)i+(@+a—b)>i=24a"
(x—a)(a:—b)+(a+b)’=(a:+a)(m+b).

ax(x+ a) + bx (x + b) = (a + b) (= + a) (x + D).
What kind of a nﬁmber is the root of a numeral

equation ? Of a literal equation ?
See § b.



CHAPTER VIII

PROBLEMS SOLVED BY LINEAR EQUATIONS IN ONE
UNKNOWN

116. Having learned some of the properties of linear equa-
tions in one unknown, we return to the subject of solving
problems by equations, which was introduced in the first
chapter. Reread § 19.

Prob. 1. A has $80, and B has $15. How much must A give to B
in order that he may have just 4 times a8 much as B ?

Let 2 = the number of dollars that A must give to B ;
then 80 — x = the number of dollars that A will have left,
and 156 4+ z = the number of dollars that B will have.

But A will then have 4 times as much as B; that is,

80—z =4 (16 + z). )
From (1) z=4.
Hence A must give $4 to B.

Prob. 2. A man has 16 coins, some of which are half-dollars, and
the rest dimes, and the coins altogether are worth $§6. How many
has he of each kind ?

Let 2 = the number of half-dollars;
then 16 — z = the number of dimes.
The z half-dollars are worth } z dollars,
and the 16 — z dimes are worth v (16 — z) dollars.

Now the coins altogether are worth $6 ; hence
{2+ 416 —2)=6.
From (1) z = 11, the number of half-dollars

s 16 — 2 = b, the number of dimes,
29
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Norte. It should be remembered that any letter as x always denotes
a number, and not a concrete quantity. Observe, also, that in any
problem all concrete quantities of the same kind must be expressed in
terms of the same unit; for example, in each of the above examples
all sums of money were expressed in terms of the unit, one dollar.

Prob. 3. A father is 7 times as old as his son, and in 5 years he
will be 4 times as old as his son. How old is each ?

Let z years = the son’s age;
then 7z years = the father’s age.
"Hende (z + b) years = the son’s age after 5 years,
and (7 + b) years = the father’s age after 5 years.
ST+ 56=4(z+5). (¢))
From (1) z=56 . Tz=3b.

Hence the son is 6 years old, and the father 35.
Prob. 4. Divide 60 into two parts, so that three .times the greater
" may exceed 100 by as much as 8 times the less falls short of 200.
Let 2 = the greater part ; then 60 — z = the less.’
Three times the greb.ter part is 3z, and
3 2 — 100 = the excess of 3 z over 100.
Eight times the less part = 8 (60 — %) and
200 — 8 (60 — ) = the defect of 8 (60 — z) from 200.
But this excess and defect are equal ; thatAis,
32 — 100 = 200 — 8 (60 — ). a
From (1) z = 36, the greater number.
.~ 60 — x = 24, the less number.
Prob. 5. A could do a piece of w&_rk in 14 hours wﬁich B could do
in 6 hours. A began the work, but after a time B took his place,

and the whole work was finished in- 10 hours from the beginning.
How long did A work ?

Let * 2z = the number of hours that A worked ;

then 10 — z = the number of hours that B worked.
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Since A could do the whole work in 14 hours, in 1 hour he would
do 1/14 of it ; hence )
v’ Z = the part of the work done by A in z hours. v

Since B could do the whole work in 6 hours, in 1 hour he would
do 1/6 of it ; hence

3 (10 — z) = the part of the work done by B in 10 — z hours.
But A and B together did the whole work ; hence

iz +3(10—-z)=1. )
From (1) : z=17 ., 10-2z=8.
Hence A worked 7 hours, and B worked 3.

Prob. 6. Find the time between 5 and 6 o’clock at which the hands
of a watch are together.

Suppose that the hands are together at z minutes after 6 o’clock.

At 5 o'clock the hour-hand is 26 minute-spaces ahead of the minute-
hand ; hence, while the minute-hand moves through z minute-spaces,
the hour-hand will move through z — 25 such spaces. But the minute-
hand moves 12 times as fast as the hour-hand; that is, in any given
time the minute-hand passes over 12 times a8 many minute-spaces as
the hour-hand. Hence

z =12 (z — 26). (0]
From (1) : z =274

Hence the hands are together at 27,4 minutes past 6 o’clock.

' Exercise 39.
1. Find two numbers whose sum is 72, and whose dif-
ference is 8. Ans. 40 and 32.
2. Divide 25 into two parts whose difference is 5.

3. Divide 12 into two parts whose difference is 16.
Ans. 14 and — 2.

" 4. The difference between two numbers is 8; if 2 be
- added to the greater, the result will be 3 times the smaller.
Find the numbers.
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5. A man walks 12 miles, then travels a certain dis
tance by train, and then twice as far by coach as by train.
If the whole journey is 78 miles, how far does he travel by
train ?

6. Find two numbers whose difference is 12, and whose
sum is equal to 4 their difference.

7. Find a number such that the sum of its sixth and
ninth parts will be equal to 15.

8. Find the number of which the eighth, sixth, and

fourth parts together make up — 13. Ans. — 24,
9. Find a number such that 4 of it shall exceed § of it
by 2. " Ans. —3b. .

10. Two numbers differ by 28, and one is § of the other.
Find them.

11. A, B, and C have a certain sum of money between
them. A has 4 of the whole, B has } of the whole, and C
has $50. How much have A and B?

12. A and B together have $75, and A has $5 more
than B. How much has each?

13. A has $ 5 more than B, B has $ 20 more than C, and
they have $ 360 between them. How much has each ?

14. A has $15 more than B, B has $ 5 less than C, and
they have $ 65 between them. How much has each ?

15. A has $100, and B has $20. How much must A
give B in order that B may have half as much as A?

16. The sum of two numbers is 38, and one of them
exceeds twice the other by 2. What are the numbers?

17. Find a number which when multiplied by 8 exceeds
27 as much as 27 exceeds the original number.

18. Find two numbers of which the sum is 31, and which
are such that one of them is less by 2 than half the other.-
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19. Divide 100 into two parts such that twice one part is
equal to 3 times the other.

20.. Four times the difference between the fourth and
fifth parts of a certain number exceeds by 4 the difference
between the third and seventh parts. Find the number.

21. Fifty times the difference between the seventh and
eighth parts of a certain number exceeds half the number
by 44. Find the number.

22. A father is 4 times as old as his son; in 24 years he
will be only twice as old. Find their ages.

23. A is 25 years older than B, and A’s age is as much
above 20 as B’s is below 85. Find their ages.

24. A’s age is 6 times B’s, and 15 years hence A will be
3 times as old as B. Find their ages.

25. Find a number such that if 5, 75, and 35 are added
to it, the product of the first and third sums will be equal
to the second sum multiplied by the number.

26. The difference between the squares of two consecu-
tive whole numbers is 121. Find the numbers.

27. Divide $380 betwecen A, B, and C, so that B will
have $30 more than A, and C will have $20 more than B.

28. The sum of the ages of A and B is 30 years, and 5
years hence A will be 3 times as old as B. Find their pres-
ent ages.

29. The length of a room exceeds its breadth by 3 feet;
if the length had been increased by 3 feet, and the breadth
diminished by 2 feet, the area would not have been altered.
Find the length and breadth of the room.

80. The length of a room exceeds its breadth by 8 feet;
if each had been increased by 2 feet, the area would have
been increased by 60 square feet. Find the dimensions of
the room.
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31. The width of a room is 4 of its length. If the
width had been 3 feet more, and the length 3 feet less,
the room would have been square. Find the dimensions
of the room.

32. A, B, and C have $ 1285 between them ; A’s share is
greater than ¢ of B’s by $25, and C’s is {4 of B’s. Find
the share of each.

33. If silk costs 6 times as much as linen, and I spend
$66 in buying 40 yards of silk and 24 yards of linen, find
the cost of each per yard.

34. If $600 be divided among 10 men, 20 women, and
© 40 children, so that each man receives $15 more than each
child, and each woman receives as much as two children,
find what each receives.

35. Divide $152 among- 5 men, 7 women, and 30 chil-
dren, giving to each man $4 more than to each woman, and
to each woman 3 times as much as to each child.

36. A sum of money is divided between three persons,
A, B, and C, so that A and B have $60 between them,
A and C have $65, and B and C have $75. How much
has each ? ‘

37. A dealer bought four horses for $1150; the second
cost him $60 more than the first, the third $ 30 more than
the second, and the fourth $10 more than the third. How
much did each cost ?

388. Two coaches start at the same time from York and
London, a distance of 200 miles, travelling one at 94 miles
an hour, the other at 9} miles an hour. In how many hours
after starting did they meet, and how far from London ?

Ans. 10% hours; 98% miles from London.
.89. A man leaves 4 of his property to his wife, } to his
son, and the remainder, which is $2500, to his daughter.
How much did he leave to his wife and son each ?
Let ¢ = the number of dollars which he left in all
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40. A man divided his property between his three chil-
dren so that the eldest received twice as much as the second,
and the second twice as much as the youngest. The eldest
received $ 3750 more than the youngest. How much did
each receive ?

41. A third of the length of a post is in the mud, a
fourth is in the water, and 5 feet is above the water. Find
the length cf the post.

42. A flock of sheep and goats together number 84.
There are 3 goats to every 4 sheep. How many are there
of each ?

43. Find the time between 3 and 4 at which the hands
of a clock are together.

- 44, A can do a piece of work in 30 days which B can do
in 20 days. A begins the work, but after a time B takes
his place, and the whole work is finished in 25 days from
the beginning. How long did A work ?

45. A can do a piece of work in 20 days which B can do
in 30 days. A begins work, but after a time B takes his
plage and finishes it. B worked 10 days longer than A.
How long did A work? :

46. One number exceeds another by 3, while its square
exceeds the square of the second by 99. Find the numbers.

47. Of two consecutive numbers, } of the greater exceeds
4 of the less by 3. Find the numbers.

48. A garrison of 1000 men having provisions for 60
days was reinforced after 10 days, and from that time the
provisions lasted only 20 days. Find the number in the
reinforcement. '

49. In a mixture of spirits and water half of the whole
plus 25 gallons was spirits; and a third of the whole minus
5 gallons was water. How many gallons were there of
each ? ~
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50. At 3 o’clock, A starts upon a journey at the rate of 4
miles an hour, and after 15 minutes B starts from the same
place, and-follows A at the rate of 4§ miles an hour. When
does B overtake A ?

51. A fish was caught whose tail weighed 9 pounds; his
head weighed as much as his tail and half his body, and his
body weighed as much as his head and tail. What did the
fish weigh ?

52. Find a number such that if § of it be subtracted
from 20, and {; of the remainder from } of the original
number, 12 times the second remainder shall be half the
original number.

" 53. A cistern can be filled in half an hour by a pipe A,
and emptied in 20 minutes by another pipe B; after A has
been opened 20 minutes, B is also opened for 12 minutes,
then A is closed, and B remains open for 5 minutes more,
after which there are 13 gallons in the cistern. What was
the capacity of the cistern ?

54. A father was 24 years old when his eldest son was
born; and if both live till the father is twice as old as he
now is, the son will then be 8 times as old as now. Find
the father’s present age.

55. If 19 lbs. of gold weigh 18 lbs. in water, and 10 1bs.
of silver weigh 9 lbs. in water, find the quantities of gold
and silver in a mass of gold and silver weighing 106 lbs. in
air, and 99 lbs. in water.

56. The sum of $ 1650 is laid out in two investments, by
one of which 15 per cent is gained, and by the other 8 per
cent is lost; and the amount of the returns is $1725. Find
the amount of each investment.

57. How many children are there in a family, if each son
has as many brothers as sisters, and each daughter has twice
as many brothers as sisters ?
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116, Intercst formulas. In problems of interest, the quan-
tities involved are the principal, interest, rate, time, and
amount. ' ‘

Let p = the number of dollars in the principal ;

r=the rate, or the ratio of the interest per annum
to the principal ;
t = the number of years in the time;

i = the number of dellars in the interest for ¢ years
at rate r.

a = the number of dollars in the amount, or the sum
of the principal and the interest;
then i=prt; ' @)
and : a=p+prt. N )
Proof. The interest on $p for one year is $ pr; hence 3,
or the interest on $ p for ¢ years, is $ prt; whence (1).
But a=p+i; whence (2).
If any three of the four numbers i, p, r, ¢, or a,.p, r, ¢ are
given, the fourth can be found by solving equation (1) or (2).

Ex. Find the principal that will amount to §1684 in-5 years 4
months at 6 per cent.
Here a = 1684, ¢ = 6}, r = 0.06. Substituting in (2), we have

1684 = p + p (0.08) (64)= 1.32 p.
o p = 1684 + 1.82 = 1200.
Hence the principal is $ 1200.

Exercise 40.
1. Solve ¢ = prt for p, r, and ¢.
2. Solve a = p + prt for p, r, and ¢.

3. Find thé interest on $ 4760 for 4 years 6 months at
5% per cent.



108 ELEMENTS OF ALGEBRA

4. Find the amount of $ 3500 for 5 years 4 months at 6
.per cent.

5. Find the interest on $ 7240 for 3 years 3 months at
8 per cent.

6. The interest on $ 1250 for 8 months is $50. Find
the rate per cent.

7. The amount of $ 1050 for 2 years 6 months is § 1260.
Find the rate.

8. The interest on $ 3420 at 6 per cent is $ 649.80.
.Find the time.

9. A sum of money doubles in 12 years 6 months.
Find the rate.

10. Find the principal that will yield $ 262.50 per month
at 7 per cent.

11. Find the time in whlch $ 1350 will amount to $ 1809
at 6 per cent.

12. The interest in 4 yea.rs 3 months at 4 per cent is
.$2099.50. Find the principal.

~13. Find the time in which a sum of money will double
itself at 6 per cent.

14. The interest on $ 1270 for 8 months is $76.20. Find
the rate.

15. At 4 per cent how much money is required to yleld
$ 2500 interest annually ?



CHAPTER IX
POWERS, PRODUCTS, QUOTIENTS

117. Certain products and quotients are so frequently
required in Algebra that the student should prove and
memorize the identities by which they can be written out.
In this chapter the most important of these identities are
proved, and used in obtaining products and quotients.

In the next chapter the converses of these identities are
used for factoring.

118. Power of a power. The nth power of the mth power
of any base is equal to the mnth power of that base; and
conversely.

That is, (a™)" = am.
Ex. 1. (28)2=2% x 23 =23+3 =26,
Ex. 2. (a®)*=a%a%?%?=alt3t3+3=gq8,

Ex. 3. (a?)%=a?d= a'?; conversely, a®®= (a?)s.

Proof. (a™)*=a™a™:-- to n factors - by notation
= gm™+m+ton summands § 76
=a™

119, Power of a product. The nth power of the product
of two or more factors is equal to the product of the nth powers
of those factors; and conversely.

That is, (ab)" = anb", (abe)" = anbmen.

Ex. 1. (abc)®=(abc)(abe)(abe) by notation
= (aaa) (bdd) (ccc) by laws (4'), (B')
=asbBcs. ) by notation

108
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Proof.
(ab)*=(ab) (ab) --- to n factors by notation
= (aa -+ to n factors) (bd .-+ to n factors) by (4", (B)
= a"d". - by notation

Similarly for any number of factors.

Ex. 2. (- a)’=(-1)%"=— a*; conversely, (- 1)%a® =(—a)"
Ex. 3. (QQa%)t=24(x?)'yt=162%*;
conversely, 24 (2?4t = (2 2%)*.

Ex 4 (—524)s= (= 5)(a?)3()d= —1262%°

Exercise 41.

Express as a power or as a product of powers each of
the following powers of products:

1. (—aHt 7. (aa®)’ - 138, (ab'iy)t

2. (—a')e 8. (—a) 14. (—a%y 2"
3. (—¥)" 9. (— az®’ 16. (— 2ad%®)*.
4. (=) 10. (— byd)s. 16. (— 2a%c)s.
5. [(—a)]t 11. (—2ad®? 17. (— 5oy
6. [(—2°7 12. (—da*® 18. (— a’xy?).

19. (—a), (—af, (—a)', (—a), (—a)¥, (—a).
20. (— ab)?, (— adb)%, (— ab), (—ab)’, (— ab)®
21. (—2a®"? (— 2a®%? (— 2a%)*
22. As a power of the base 3% express 34, 3%, 3%, 3%, 3%,
23. As a power of the base 2% express af, 25, o8, 2",
24. As a power of the base a® express a% a, a¥, a?, a®.
Express as a power of a product:
25. 6° x 42 27. (—a)®(—0b) 29. (—2)%¥(—2)°
-26. 4°x (—3)". 28. (—a)® 30. a'(z+y)*
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120. Square of binomials. By multiplication, we obtain
(@a+ b6y =a*+2ab+ b @
That is, the square of the sum of two numbers is equal to
the sum of their squares plus twice their product.
Ex.1.  (Bz+6y)=@Bx)*+(6y)*+2@2)(5y) . by (1)
=023+ 2592+ 302y. § 119
Ex. 2. @z-38yP=[(22)+(—8y)])?
=@2) +(-31)+222)(-8s) @)
=423+ 92— 122y, [6))
Ex. 3. (@a-b)2=[a+(-d)]?
=a+(—b)?+2a(—b)
=a?—2ab + b2

In the examples of this chapter there are two steps:
First step. The application of an identity.

Second step. The simplification of the result obtained by
the first step.

E.g., in example 2, the application of identity (1) gives the result
in (2), and the simplification of this result gives (3). .
At first the pupil should write out these steps separately ; later
he should apply the identity mentally, and write only the final result.
Observe the advantage gained in this chapter by regarding a poly-
nomial as a sum.
131. Square of polynomials. If in the identity
(e+2)¥=a"+2'+2ax _ )
we put b + y for x, we obtain
@+b+yr=a+0+13)’+2a0 +9) |
=a+6+y+2ab+2ay+28y. (2)
And se on for a polynomial of any number of terms.
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Hence we infer that
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.The square of any polynomial is equal to the sum of the
squares of its several terms, plus the sum of the products of
twice each term into each of the terms which follow it.

Ex. (2*+2y-—38c¢)?

=@+ @y +(—80)2+22*(2y)+22*(—8¢)+2(2)(—30)
Sxt+4y2+ 9 +4ay —6cx?—12¢y.

Exercise 43.

Write the square of each of the following expressions :

1.
2.

2a + 2.
2+

8. 3a—5bd.

8.
7.

9.
10.
11.
12.
13.
14.
15.
16.
17.

— bz
—2a*+50%
—ax® 4+ byt
3abc — 4 2%.
— 22 — aba’.
—4a®+3cd
a+b+c
at+b—ec
a—b+4ec
a—b—ec.
a+2b+44.
z+2y+ 32

24+2x—-32%
28 —-3x—2.

18.
19.
20.
21.
22.
23.
24.
25.

26.
21.
28.
29.

30.

31.
32.
33.
34.

a? -2+ 3¢
3a*—6x—6.
2+y+z+v.
TH4y—2z—0.
T—y—2z—0.
B+t —22—2.
a+2b—3c+4d.
142—224 2%
3a’ -4 -2
48 —3a—4c—34"
322 —2a*+4b—1>
8%y — 4 a%s
o'y + gty

22 —1T.
6ary™ — Loy,
4ad* — 3arr
2(@+1)— 5@+
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122. Product of sum and difference. By multipligation, we
have
(@+b)(@a—b)=a*— & ‘)
.That is, the product of the sum and the difference of the
same two numbers is equal to the square of the first number in
the difference, minus the square of the second.

Ex. 1. 222+ 6bp8) (228 — 6P )=(228)8 ~(6bp%)? ° by (1)
=420 —25b%8  §§119, 118

By properly grouping terms, the product of two poly-
nomials can frequently be written as the product of the sum
and the difference of the same two numbers.

Ex.2. (a+b+c)(a+b—=c)=[(a+d)+c][(a+d)—¢]
- =(a+bd)P-c2 by (1)
=at+2ab+ b2 —c2
Ex. 8. (a+b—-c)(@—-b+c)=[a+(®-c)][a—-(d-0)] -
=a?—(b—c)?
=a?— b2+ 2bc—c3

Exercise 48.
‘Write each of the following indicated products:
. (b+a)(@a—0). 5. (F+4y)(F—49).
. G+2)(z—0b). - 8. BL2+5y)(B2*—51.

. 1432)(1—32). 7. (Bby+ 2ax)(Zax — 3by).
. (O +a®)(a®—bd). 8. (4ca’+50%)(4ca®—bbY)
9. (@a+b+c)(@a—b—0o). '

10 14bd—c)1—0d+c).

11. (@a—b+c)(a—bd—c).

12, (#+3y—22)(x—3y+22).

18. (B +axy+ ¥ (@ —zy +¥).
C 14 P+ -y +2).

[ T -
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15. Ba+b—3c)(Ba—b+3¢).

16. (a*+3a—1)(a*—3a—1).

17. (@*—2a*+1)(a*+2a®—1).

18. (a® —b*— &) (a® + ¥ + ).

19. (—2—¥+ 0@ —y*+7).

20. (ax — by + ¢2) (ax + by — c2).

21. (3z+9—4y)Bz—9+4y).

22. (14+42+3y+22)(1+4z—3y—22).
28. (:c+2y+a—b)(a:+2y—a.+i)).

123. By.multiplication, we obtain
x+a)y(x+b)=x*+(a+ b)x + ab.
That 1is, the product of two binomials having the same first
term i3 equal to the square of the first term, plus the sum of the

second terms into the first term; plus the product of the second
terms.

Ex. 1. +NDNE+6)=22+(T4+6)z+7x56
=22+ 122 + 8.

Ex. 2. -NE-6)=[z+(-7N][z+(- 5)J
=224 (~T=5)z+(—T7)(—6)
=2z2— 122 + 86.

Ex. 8. +NDE—-6)=224+(T—-56)z+7(-5)
=234 22 —36.

Ex. 4. @-DE+6)=2*—2x—8b.
Exercise 44.
Write each of the following indicated products:
1. (z+8)(x+5). 4. (z—4)(z+11).
2. (x—3)(x+ 10). 5. (a+9)(a—5).
8. +T)(z-9). 6. (a—8)(a+4).
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7. (@ —6)(a+13). 9. (a—9b)(a—8d).

8. ®—3a)(x+2a).  10. 3z—2y)(Bz+7Y).
Bz-29Bz+N=E@2+(-2y+ 38z +(-2yy
=923 —-8zy— 25
11. (a—>5b)(a+10d). 17. (zy — 7 ab) (zy — 2 ab).
12. (&% — 6)(«* + 4). 18. (xz — 4 ab)(x+ 5abd).
13. (o +22)(a® — b 2). 19. (22 — 9ab)(2z + 11 ad)

14. (zy —9) (v + 6). 20. (a*+ ¢)(a*— b).
156. (zy —6ad)(zy + 2ab). 21. (x**'—3)(a**'—8).
16. (ab— 5)(ab + 7). 22, (@™1— %) (@ 1+ c?).

23. (F*+4y+42)(a*—5y—52).
Regarding 4(y + 2) and — 5(y + 2) as the second terms, we have
[x2+ 4y +2)][2* - b6(y + 2)] =2t — (¥ + 2)z2 — 20(y + 2)2.
24. x+y+3)(x+y—5). 208 (x—y—9)(z—y+8).
25. @+b—T)(a+b—8). 27. (a—4—2b)(a+6—20).

124, Cubes of binomials. - By multiplication we obtain
(@a+bP=a*+3a% +3ab®+ b @)
That is, the cube of the sum of two numbers is the cube of
the first, plus three times the square of the first into the second,

plus three times the first into the square of the second, plus the
cube of the second.

Ex. 1.
(22 +8y)*=(22)*+ 8(22)*(3y) + 3(22) By)* + (By)® by (1)
=828 + 36 2% + 64 zy? + 27 38,
Ex. 2.

@z—-8a)B=[(22)+(—3a)]
=(2z)3+3(22)*(—3a)+3@22z)(—8a)?+(—8a)*
) =828 — 86 22%a + 54 za? — 27 a?.
Ex. 8.
(a—0b):=a®—8a% + 3ad? - bs
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Observe that when the second term has a negative numeral coeffi-
cient, each even term in the result contains an odd power of this
coefficient, and therefore has a negative numeral coefficient.

The same is true in § 120.

125. The operaticn of raising a number to any required
power is called involution.

Exercise 46.

‘Write out the cube of each of the following expressions:

1. z+1. 6. a—2b. 11. 2ax® + m®n.
2. 22+ a. 7. az + by. BTy } o’ — L by
8. a+3b. 8. 2a— 3be. 13. 22"+ 5y
4. z—1. 9. 2+ 4a. 14. 3z™y~+a’
5. 3z—a. 10. zy —4ab. 15. 2"b —3ay"t.

126. Powers of sums. By multiplication we obtain
(@a+b)y=a'+4a°6+ 6a’6*+ 4ab®+ b
(@ + 6)°=a®+ b a*b +10a%* + 10a%6®> + 5 ab* + b
(a + 6)°=a®+ 6a°h + 15 a*t* + 20 4°6° + 15 a®6* 4 6 ab® + 6"

The expressxon obtained by performing the indicated
Yoperation in (a + b)* is called the expansion of (a + b)™
Thus, the second member of each of the above identities
is the expansion of its first member.

By inspection we discover in each of these expansxons
the following laws of exponents and coefficients:

(i) The exponent of a in the first term is equal ‘to the
exponent of the binomial, and it decreases by 1 from term to
term.

(ii) The exponent of b in the second term is 1, and increases
by 1 from term to term. .
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(iii) The coefficient of the first term s 1, and that of the
second term 18 the exponent of the binomial.

@iv) If in any term the coefficient is multiplied by a’s
exponent, and this product is divided by b’s exponent plus 1,
the result 13 the coefficient of the newt term.

E.g., in the expansion of (a + b)5, from the second term b a*h, by
(iv), we obtain 6 x 4 + 2, or 10, which is the coefficient of the third
term. From the third term 10 @32, by (iv), we obtain 10 x 3 + 3,
or 10, which is the coefficient of the fourth term ; and so on. It can
be proved that the above laws hold for any power of a binomial.

Iy the expansion of (@ + b)* there are 6 terms, each of the fourth
degree in g and b, and the first two coeflicients are repeated in inverse
order after the third term. In the expansion of (a + b)® there are 6
terms, each of the fifth degree in a and b, and the first three coef-
ficients are repeated in inverse order after the third term.

Observe that in each of the above expansions:

The sum of the exponents of a and b in any term is equal
to the exponent of the binomial.

The number of terms is equal to the exponent of the
binomial plus 1.

The coefficients are repeated in the inverse order after
passing the middle term or half the number of terms, so
that the coefficients of the last half of the expansion can
be written out from the first half.

Each expansion is homogeneous in a and b.

Ex. 1. (2z+38b)*
=(22)*+4(2x)3(8 ) +6(2 2)2(3 b)2+4(2 ) (8 )3+ (8 b)*
=16 z* + 96 28 + 216 2202 + 216 xb? + 81 b4,

Ex. 2. (22— a)b
=(2x)5 + 6(2 2)*(— @)+ 10(2 2)3(— a)? + 10(2 2)3(—a)?

+5(22)(— a)t +(—a)®

=32 25 — 80 z*a + 80 z%a? — 40 2%a® + 10 za* — ab.

Ex. 3. (a—Db)®
£a® — 6a% + 15 a'b? — 20 a3b® + 15 a?b* — 6 ab + b°
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Observe that when the second term in the biromial has a
negative numeral coefficient, each even term in the expansion
contains an odd power of this coefficient, and therefore has
a negative numeral coefficient. Thus the expansion of
(x—y)® differs from that of (z+y)® only in the signs
before the even terms.

Exercise 46.
Expand each of the following powers:
1. Qz+1)*% 5. (2a—3)" 9. (2m?—an?t
2. (2—-3y* 8. (a®+ bc)’. 10. (a"— 2094
3. (2*+ay)t 7. 2x+3)% 11. (a"b — z™y)°
4. 2x+a). 8. (Ba—20)" 12. 2a—c+ z’)’.‘

Since any polynomial can be written as a binomial, the laws in § 126
can be used to expand a power of a polynomial.

E.g., we can write,
(2a—-c+23)3=[(2a—c)+22]®
=(2a—c)*+3(2a— c)¥(z?)+ 3(2 a — c) (#%)3+ (a3)®
=8ad— 12 a% + 6 ac? — ¢® + 12 a%2? — 12 acx?
+ 3c%2 + 6 axt — 3 cat + 5.

13. (P +=z+1)> 15. 32 —5z+1)>%
14. (F—x+2)% 16. 2x—3a+0b)
127. Two powers are said to be like, when their exponents
are equal ; and unlike, when their exponents are unequal.
E.g., a?, x? are like bowers; a?, a8, at are unlike powers.
138. By 6 of § 6, like powers of equal numbers are equal.
Hence, like powers of identical expressions are identical.
129, By division we obtain,
(@— b+ (a—b)=a’+ ab + b%;
(a* — b*) = (a — b) =a® + a’b + ab* + b*;
(a’—b")+(a—b)Ea‘+a3b+a’b’+ab’;|-b‘. _
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From the above identities we infer the following theorem:

The difference of the like powers of any two numbers, as a
and b, s exactly divisible by the difference of the numbers,
taken in the same order; the laws of exponents and coeffi-
cients in the quotient being as follows:

(i) The exponent of a in the first term is 1 less than the
exponent of a in the dividend, and it decreases by 1 from term
to term.

(ii) The exponent of b is 1 in the second term and increases
by 1 from term to term.

(iii) The numeral coeflicient of each term is +1. The
number of terms is equal to the exponent of a in the dividend.
Or stated in symbols the theorem is

a"—b"
a—b

where n is any positive integer.

=a" '+ a" b+ a2 + .- + ab" 2+ bn-l, (1)

Proof. Multiplying the second member of (1) by the
divisor @ — b, we obtain the dividend a" — b".
Hence (1) is an identity (§ 83).

2748 — b_ (3a)8 — b
Bx Ll 5a—o - Ga)—»

=(3a)? +(3a)b + b1=9a? + Sabd + B2
Ex. 2.

3(2__212;):‘#2;_1;‘_5 @)t +(20)(32) + (2 0)}(32)*+ 2a(32)" + (3 )8

=16a* + 24 a®z + 36 a%x? + 64 ax® + 81 2.

Observing that each term in the dividend is the fifth power of the
corresponding term in the divisor, we write the quotient by taking the
proper powers of 2a and 3z.

The quotient is homogeneous when the dividend is homogeneous.
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Exercise 47.

Write each of the following indicated quotients:

1, 9% —4y 6. @—16 11, 8a%— 3431

~ 82— 2y T a—2 o 2a2—T0
8lat—160° . S8la‘—1 19, 840%° — 8%

T 9dP— 40 " 8a-—1 T 4a%—22%
Py — a* 2 — 32 g g

. . . . 13. ;

3 xy—a 8 z—2 8 al— 2

g B40*—82 o 32481 . gty
4a—22 2¢—1 2t — g

. 1—729% |0 243a°—320° . oty
1-9y 3a—2b 2 — gy

130. By division, we obtain:

R @—b)+(a+d)=a—0b;
1) {(a"— b*) + (a + b) = @® — a’ + ab® — b°
o (@ + V) + (a+b) =a®— ab + V%;
@ {(a‘ +0%) + (& +b) =a* — &% + a%b? — ab® 4 b
From the identities in (i) and (ii) we infer the two fol-
lowing theorems:

(1) The difference of the like even powers of two numbers
i8 exactly divisible by the sum of the numbers. o

(ii) The sum of the like odd powers of two mumbers is
exactly divisible by the sum of the numbers.

In each quotient, the laws of exponents and the number of
terms are the same as in § 129.

The numeral coefficient of any odd term i3 + 1, and that
of any even term is — 1.
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Or stated in symbols, when = is even, the theorem is
a"—b"
a+b

and, when « is odd, the theorem is

=a"'—a"% + a" % — ... + ab"* — b, @

a;' i :" =a"1— "% + a" % — .. — ab"* + 5" (2)
Proof. Multiplying the second member of (1) or (2) by
the divisor a + b, we obtain the dividend a* — b" or a* + b™
Hence (1) and (2) are identities (§ 83).
-— 4 (& 4
S T PR T T
=22 -(22*BN+(22)BY*—(By)*
=828 —122% + 18 zy? — 2798,

Ex. 2, 3000421863 _ g jhaya (2 ab2) (6 )+ (6 cxt)s .

2 ab? + 6 cx®
=4 a?* — 12 ablcx® + 36 ¢z,
Bxercise 48.
‘Write each of the following indicated quotients:
1—a’? 2+1 a’+ 32
1, ——— . —_— 13, ———
1+ab 7 rz+1 a+2
g, 409y o 248 14, GV+243
" 2ar+ 3y ) T ab+3
g 92 —16y 9 148a® 15, 129 +80°
© 8a44y "1+2a 9420
8 GV 10 oy +2162° 16 a'"’ 4322
©abt 4oy " ay+462 ‘a4 22
g, TyE—16m® a®%®+-8¢ 17 16 «'y* — 256 o®
" mp42m? " a?+2c¢ " 2xy+4a?
6. T¥—1 12. TX+1L 18, S22
T af+1 T oay+1 a®t* + o

19. Make a list of the identities proved in this chapter.
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131, The remainder theorem. The result obtained by sub
stituting a for x in any integral expression in x is the same
as the remainder arising from dividing the expression by
x—a.

E.g., dividing 22% — 22 — 6 by z — 2 until the remainder does not
contain z, we obtain the remainder 6, and 6 is what 228 — 22— 6
equals when z = 2.

Again, dividing 2% + a® by = — @, we obtain the remainder 2 a8,
and 2 a3 is what 28 + a3 equals when z = a.

Proof. Let P denote any integral expression in z.

Divide P by  — a until the remainder does not contain 2.
Let @ denote the quotient and R the remainder; then

P=Q(z—a)+R. 1N

Let P], (read ¢ P when x=a’) denote the value of P when
a is substituted for . '

Put o for « in (1); then, observing, that @].(a—a) is
zero, and that R does not contain z, we have

PlL=R )

132, The factor theorem. If any integral expression in x
becomes zero when a is substituted for x, the expression 8
exactly divisible by x — a.

Proof. From P],= R in § 131, it follows that if P],=0,
the remainder is zero, and the division is exact.

Ex. 1. The expression z5 — @5 becomes zero when ¢ is put for z;
hence x° — ab is exactly divisible by z — a.

Ex. 2. The expression 27 + y7 becomes zero when — y is put for z ;
hence 27 + y7 is exactly divisible by z — (—y), or z + .

Ex. 3. The expression a» — b" becomes zero when b is put for a;
hence a* — b» is exactly divisible by a — bd.

Ex. 4. When 7 is odd, a® + b* becomes zero when — b is put for
a ; hence a" + b" is exactly divisible by ¢ —(—b), or a + b.
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Exercise 49.
By § 132, prove that each of the following d1v1dends is
exactly divisible by the corresponding divisor:
1. @—2—6)+(=—3). 8. (*—14zx—8)+(xz—4).
2. (@—22—15)+(@—5). 4. @P—-38+4)+(z+1).
5. 2a*—3a'—42+5)+(@—1).
6. (v*—2a%*+4a’— 3a*)+ (x— a).
7. (@ —3a%’— Ta’z— ba*) + (z+ a).

When = is odd, by §§ 131 and 132, prove:

8. 2*+ a" is exactly divisible by #+ a, but not by
z—a.

9. 2 —a" is exactly divisible by z —a, but not by
x4+ a.

When = is even, prove:

10. z*— a* is exactly divisible by both # 4+ a and z—a.

11. z*+ a" is not exactly divisible by either z+a or
x—a.

133, The following examples illustrate how the formulas
in § 129 or § 130 often aid in writing out the partial quo-
tient and the remainder, when a division is not exact.

Ex. 1. Divide a2 + b2 by a — b. )

Adding to the dividend zero in the form — b2 + b2, we have

a’+ b2 _ad— 24202
= =a+bd
a—>b a—>b + + b
Ex. 2. Divide a®+1 by a —1.
Adding to the dividend zero in the form — 1+ 1, we have

M:usaﬁ.'.a*_ 1 +_2_._..

a-1" a-1
41l _aot—14+2_

Ex. 3. T o=~ T =g g2 -1

x. 3 z+1 z+1 vt +x+l
a3+3_as—8+ll_a +2a+4+ 11

Ex. 4 =
) a—2 a—2 —2
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Exercise 50.

Write the partial quotients and the remainders :

1.

Simplify each of the following expressions:
A+a)}—1+a)(d—a).
A=) 4 (L 42 (1.
(= — a) (= + a) (&* + a®) (=* + a*).

(@* — a®) (2 + a®) (2 + a*) (2* + a?).
@E—z+)(@E+2+1)(@@ -2 +1).
@+y+2)@E+z—y) @y +2—2)(@+y—2).

13.
14.
17.
18.
© 19,
20.

5.

@—3 9. 11
z—2 T z41
%+ 10 2+,
ax—y* z—a
4 at 11 2 —a
z—a z+a
o+ at 12. ©+86,
z4a z—2

156. (a + b)*(a—b)*
16. 2y—3a)’(2y+3a)’

Write each of the following indicated quotients:

a%h? — z“g".
ab? — xy?
640" — 729 2"
2a*432°
o'y’ +128
zy + 2
auwu + bun‘
azxn + bﬁﬂ

21.

22.

23.

24.

at — 64 o
a™— 2 g+t
b2m — 729 oftnt8
26. bl — 729 o+,
6 b — 3!
ambim — 32 ainyin+s
amb&u —_ 2 xuy«-u ’

28 7+ (a + b)*~+
T a4 (a4 b))~

25.

27.




CHAPTER X
FACTORS OF INTEGRAL LITERAL EXPRESSIONS

134, The problem of multiplication is ¢ given two or more
factors, to find their product.’” The converse problem, ¢ given
a product, to find its factors,’ is the problem of factoring.
Reread §§ 33, 117.

Certain forms of products which frequently occur are
called type-forms, as a® + 2 ab + b% or a®— b

135, Any monomial is readily resolved into its factors.

E.g., the factors of 6z (a + y) are 6, z, and a + y.

The factors of xzy are z and y or — z and — y; but we usually use
the factors z and y because of their simpler form, unless there is some
special reason for using — z and — y. ‘

Again, the factors of 22 are z and z or — z and — z ; that is, 22 is
the square of x or — z.

136, The converse of the distributive law is -

ax+bx+cx+--=(a+b+ec+-)x. @
Hence, any factor which i3 common to all the terms of a
polynomial is a factor of the polynomial.
Ex. 1. Factor 8 az? + 6 aZx — 9 a®28.
Here 3 ax is seen to be a factor of each term ; hence
3ax? + 6 a¥x — 9 a%8 = (8 ax) + 2 a(8 ax) + (—3 a?2?) (8 ax)
=(z+2a — 3a%?)3ax.
Hence the required factors are 3, a, z, and z + 2a — 3 a%?.

In identity (1) the letters z, a, b, ¢, «-- can stand for any binomial
or polynomial.
126
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Ex. 2. Factor z(a — 3b) — 2y(a — 3d).
The binomial @ — 8 b is a factor of each term ; hence
2(a—3b)—2y(a—3b)=(x—2y)(a —3D).

Ex.3. y-z-2a@y—2)=1(y—2)—2a(y—2)
={1-2a)(y—2).

Ex. 4. Factor (y —z)(a?+ b)— 2(y — z)(a? - b).

The expression =(a® +b)(y —x)—2(a? - b)(y — %)
=[a*+b-2(@- D)) -2)
=@b—ad)(y — 2).

Ex. B. a*(n —z)—b*(z — n) = a?(n — z)+ b%(n — )
=(a? +.b3)(n-z).

BExercise 51.

Factor each of the following expressions:

1. 3z +3. 13. 2ary" + 6 a~tiyr+l,
2. ?+52. Ans. 2, a*, y*, 1 4 3a%y.
3. ab+ be. 14. ax™tiyrtl | hemtiynts,
4. 4a*—6a%. Ans. 2%, g™, a + bay.
5. 2ax+4 32" 16. 6y™* — 3y~
6. Ta®—21a%. 16. 8a™ —42",
7. @ —b62% + 202%° 17. T2 —14 2.
8. bar'—10ar—b5a% 18. z(a+1)—y(a+1).
9. 38 a’h® — b7 a'd®. 19. y(x—a)—2z+a.

10. 3a® — 6a%®* + 9 a®® 20. y(z—a)—(a —2).

-
[

15a® —10a% 4+ 5a%d.  21. 4(z+1)*—6(x+1).
. Balr—4a%y—12a%°.  22. 2(y—0) —c(db—y).

-
N
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137, Trinomials of the type-form a? + 2 ab + 6%
The converse of the identity in § 120 is
a’+2ab+ b= (a+ D)% @)

That is, a trinomial, two of whose terms are the squares of
two numbers respectively, and the remaining term 18 twice the
product of these numbers, i3 equal to the square of the sum of
these numbers.

Ex. 1. Factor 923 4 24 z + 16.
9 2% is the square of 3 z, 16 is the square of 4, and
242=2.82.4.
S92 242+ 16=(82 + 4)% (¢)]
Or, 923 is the square of — 8 z, 16 is the square of — 4, and
242=2(—38z)(—49).
;9224242 4+ 16=(— 32 —4)3 (2)
The factors in either (1) or (2) are correct, but unless there is some
reason to the contrary we usually take the simpler factors given in (1).

Ex. 2. Factor 36 at + b* — 12 a%3.

86 at is the square of 6 g% or — 6 a2, and b* is the square of b2 or
- b

To obtain the term — 12 ¢2b? we must take either 6 a? and — b3 or
— 6 a? and 52; that s,

— 12 a?2=2 - 6 a?(— b?), or 2(— 6a®)d2.
~ 36 at + bt — 12 a??=(6 a? — b?)?, or (—6a3+ B3,
Any polynomial which is to be factored should be first
examined for any factors common to all its terms.
Ex. 3. —3a%(a — 5b%)2=— 3 a®(a? — 10 ab® + 25 b%)
=— 3 ab + 30 a*d® — 75 adbs.
" In identity (1), @ and b can denote any binomial or polynomial.
Ex 4 @=20)+2x-29)By—25)+By—2z)
=[@-20)+@y-2n)P=@ - 2"
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Exercise 63.

Factor each of the following expressions:

1. a*+6a+9. ' 13, 4% — ot — 444

2. ¥+ 122 4 36. 14. 82— 4ot —4.

8. 2*4+254+10x. 16. &y + o’y + Fxf

4, 4121 — 222, 16. 4a%? + 4 abxy + b2
5. a’+49—14a. 17. 9a®+ 255 — 30 ab.

6. a’+ 25 —10a. 18. 25a‘zx?® -- 30 a®b*x + 9 b*
7. 1-8z+ 1622 19. 25a* 4 25 b* — 50 a?.
8. 4a*+9b*—12abd. 20. a®+ 25b% — 10 abd.

9. 9a'+ 24a%® + 1654 21. $a'+3§0° — }Ea’.
10. 2*+ 192+ @y, 22. 4dxy® — 4% 4 oPy.

11. 5a*—10a® + 5% 23. (a+0y*+2(@+b)+1.
12 a®—6a’ + 9ad® 24. (2x¢—a)’—8(a—2x)+16.
Cz—a)X—8(a—22)+16=(2z—a)?+8(22—a)+ 16.

=Q2z—a+4)>%

25. (@+2xy+yHa+ (@+y)b%
@+ 22y +yM)e +(x + Y*=(x+ 9% +(z + Yo%
=(az +ay + ) (z +9)-
28. *(x+2)+2(@x+2°+ 22+ 2).
27. m*4+2mn+ni—p(m+n). 29. 2™+ 2%y + Y™
.28. a(b—c)—(b'—2bc+c%). 30. 362~ — 482! 4+ 162"

138, A perfect square which contains only two different
powers of some one letter can often be reduced to the type.
Jorm a®+ 2 ab + b* by first writing the polynomial in de-
scending powers of that letter.
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Ex. 1. Factor 2?2 + ¢+ 22+ 22y — 22z — 2 y2.

The expression contains only two different powers of z; hence, we
arrange the expression in descending powers of z, as follows:

The expression =22 + 2z(y — 2) + (¥2 + 28 — 2 y2)

=2 +22(y - 2)+(y—2)?
=@x+y-—2)2% .

We could have arranged this expression in descending powers of
yorz. .
Ex. 2. Factor at + 4 bt + 9 c* + 4 a?? — 6 ac® — 12 b33,
Arranging the expression in descending powers of a, we have
The expression = at + 2 a2(2 b% — 3 c2) -+ (4 b4 + 0 & — 12 b?e?)

=at + 2632 b2 — 8c2) + (2 b2 — 3 ¢2)?
=(a?+20%-3c2)2

.

Ex. 3. Factor
at—2a5+8at+2a%(b—1)+ a?(1 —2b)+2abd + bt

The expression contains only two different powers of b; hence, we
arrange it in descending powers of b, as follows:

b + 2 b(a® — a? + @)+ (a® — 2 a5 + B a* — 2 a® + a?).

This expression is a perfect square, if its last term is the square of
a® — a? + a. By § 121, we have

(*—a®+a)?=a%—-2a°+3a*—-2a+ak
" Hence the given expression is identical with
b+ 20b(a®— a® + a) + (a® — a? + a)’,
or b+ a®—a%+ a)

Exercise 53.
Factor each of the following expressions:
1. #—6¢c(@a+b)+9(a+d)
2. 4+ +4E+2ab+4ac+4be.
8. 404+ 0®+4+9c34+6bc—12ac —4abd.
4, 4a'+ b 4 —20%F —4a’F + 4a%c
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@ +4y+92°+ 4oy + 622412y

25at + 9 bt + 4 ¢t — 12 0% + 20 Fa? — 30 oD%

6 aca® + 4 V%t + o’ + 9 2 — 12 bea® — 4 aba’.
— 60 +9c+ vt —12c%? + 4at + 4 a2

6 ab’c — 4 a®bc + a®b® + 4 a’c + 9 b’ — 12 abc®.

Nore. The products in exercise 63 can be factored by using the
converse of § 121.

® ® 2 @

130, Trinomials of the type-form x*+ px + g¢.
The converse of the identity in § 123 is
@ +(@+b)z+ab=(+a)(z+b). @

Any trinomial in the form «* + pz + ¢ can be written in
the form 2*+ (a + b)« + ab and factored by (1), when we
know the two factors of ¢ whose sum is p.

The two factors of ¢ whose sum is p can often be found
by inspection as below :

Ex. 1. Factor 22 4+ 7Tz + 12.
Here p =17 and ¢ =12.

The two factors of + 12 are both 4, or both — ; hence, as their
sum is + 7, both are +. The pairs of positive whole numbers whose
product is 12, are 12 and 1, 6 and 2, 4 and 3; since 4 + 3 =17, 3 and 4
are the two factors of 12 whose sum is 7.

S+ Tz +12=224+(3+4)2+3 x4
=@x+3)(+4). by (1)

Ex. 2. Factor 22 — 9z + 20.

The two factors of 4 20 are both + or both — ; hence, as their
sum is — 9, both are —. The pairs of negative whole numbers whose
product is 20 are —20 and —1, —10 and —2, — 5 and — 4 ; since
(—6)+(—4)=—9, — b6 and — 4 are the two factors of 20 whose sum

is — 9.
L2 —-92+20=224+(-6—-4)x+(—5)-(—4)

=(z—6)(x—4). by (1)
[ 4
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Ex. 3. Factor z? 4 6z — 27.

The two factors of — 27 are opposite numbers ; hence, as their sum
is + 6, the positive factor is arithmetically the larger. The pairs of
whole numbers whose product is — 27, the larger arithmetically being
+,are 27 and — 1, 9 and — 3; since 9 +(— 3)=6, 9 and — 38 are the
required factors.

S+ B8r—2T=224+(9~-8)x+9-(-8)
=(z+9)(z—3). by (1)
Ex. 4. Factor a%2? — bax — 84,

The two factors of — 84 are opposite numbers ; hence, as their sum
is — b, the negative factor is arithmetically the larger. The pairs of
whole numbers whose product is — 84, the larger arithmetically being
—,are —84 and + 1, — 42 and + 2, —28 and + 3, — 21 and + 4,
—14and + 6, —12and 7; since — 12 4+ 7 =5, — 12 and + 7 are the
required factors.

~ (ax)? — 5(azx) — 84 = (az — 12)(az + 7).
Ex. b. 923 —-122—-T17=(8x)2—4(82)—T7
=@Bz—11)(8z + 7).
Ex. 6. Factor z2 — 32 zy — 106 2.
The two factors of — 105 y* whose sum is — 82y are3y and — 85y,
s —32zy — 106 yi=( + 3y)(x —85y).

Ex. 7. 4a—a2+21=—(a?—4a-21)
=—(a—T7(a+3)
=T —-a)(a+3).

Exercise 64.

Factor each of the following expressions :

1. 2?4424 3. 6. ¥*+422—3.
2. *—4x43. 7. 24 z—6.

8. 22+ 92+ 20. 8. *+4x—5.
4. P —-112418. 9. 24 22—35.

8. @—8x+15. 10. #*—3x—10,
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11.
12.
13.
14.
16.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

ELEMENTS OF ALGEBRA

rz—22+6.
2?4 bx—14.
2?4+ 18472,
z—ao?+132.
?—5x—84.

- 2?4 bz —150.

22 — 25z 4+ 150.
2?4+ 11 2 —180.
x — * 4 156.

2* — 31 2 + 240.
x? — 34 = + 288.
2% — 35z — 200.
22 —17 2 — 200.

a’x® — 21 ax 4+ 108.

a%? — 21 az + 80.
a%? + 21 ax + 90.
a%® —19 ax + 78.

a’? + 30 ax + 225.
a%?® + 54 ax + 729.
a*x® — 38 ax 4 361.

24P — by — 24.
4224122 — 55.
94?4+ 62— 35.

16 2* 4+ 82 — 15.

85.
36.
387.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
63.
b4.
55.
56.
67.
68.

422 —122—91.

2* — 20y — 96 92

o — 262y +169%
2?— 232y + 1324
422+ 20y + 213
942 — 39 2y + 2215
o + 43 2y + 390 4.
a® — 20 abx + 75 b%?.
a*—29 ab + 54 b
130 4 31 xy + 2>
a® + 12 abx — 28 b
2t 4 13 a%® — 300 a*.
ot — a’c® — 462 o',
ot — a¥%® — 132 ot
143 — 24 za + 2a®.
216 4 35z 4 o>

65 + 8 wy — a2
110 —x — 22

98 — T —a’
380 —x — 2

120 — 7 ax — a’?.
105 416 cy — %~
(@+9)’+6(+y)+8.
(a—b)°’+8(a—b)+15.

140. Trinomials of the type-form ax®+ bx + c.
Multiplying and dividing a#® 4+ bz + ¢ by a, we obtain
a2? + bz + ¢ = [(ax)? + b (az) + ac]+ a. @
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By § 139, the trinomial in brackets can be factored by
finding the two factors of ac whose sum is b.

Ex. 1. 823 —162+6=[(82)2—16(8x)+ 16]+ 8
=Bz-16)8z—-1)+38 § 139
=@x-6)8z-1).

Ex. 2. 623+ 322 —21

=[(62)? + 82(6x)— 105]+ 5

=6Bx+85)(b6x—38)+5b
=@+ 7)(5z-3).

Ex. 8. 822 - 172y + 102 =[(32)2 — 17Ty(32)+ 80 2]+ 8
=@x-56y)Bz—2y).

Exercise 56.

Factor each of the following expressions:

2a*4+3x+1.
3884+ 5x 4 2.

3+ 8z + 4.
24+ Tz 4 6.

26432 —2.

® ® e r PN

-
= e

. 384+ Tx—6.
. 228 4+ 2—28.

o
™

32*+ 102+ 3.

268 4+112 4 5.

b +11x+ 2.

42+ 112—3.
246 +152—8.

13.
14.
165.
16.
17.
18.
19.
20.
21.
22.
23.
24.

32 + 132 — 30.
6+ T7x—3.
3a%? 4 23 ax + 14.
3a*2® + 19 ax — 14.
6 a’%® — 31 ax + 35.
3a®+ 412 4 26.
42° 4232 4 15.
32— 132+ 14.
228 —b5xy—312
32 —1Txy + 1032
1222 — 23 2y 4 10 32
2428 — 29ay — 442

Factor each of the following miscellaneous expressions:

26. 2a(n—1)—2(1 —n).
26. cy™ — ay™i 4 ny™tL
27. 9a'+16b* — 24 o’

28.
29.
30.

Ta?— 152y — 1832
5x(a—2y)—2(2y—a).
/9 + y*/4 + 2y /3.
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31, (#—3)y°'+4(3—2)+4.  37. 1224502 — b50.

32. 132224+ —1. 38. a’+ (a—b)x—0b.

33. ar’+(a+d)z+b. 39. P’ 2ay—4az—4yz+42°
34. 2(zx—a)—y(x—a). 40. 5y~ 3y~ 4y™
36. 2™ '— 3ot —5am 41. (a+b)’+5(a+d)—24.
36. 1214+ 8132+ 198ay. 42. (v—y)'—4(x—y)—21.

141, Binomials of the type-form a" — bn, where n is even.
The converse of the identity in § 122 is

a— b= (a+b)(a—b) @
That is, the difference of the squares of any two numbers
s equal to the product of the sum and the difference of the
numbers.
Ex. 1. 9a%® — 4¢6*=(3a%%)? —(2¢)?
= (3a%% + 2¢)(3a%® — 2¢) by (1)
The letters ¢ and b in (1) stand for any expressions.
Ex. 2. a?—4ay+4y2—9c2=(a—2y)?-(8¢c)?
=(a—2y+3c)(a—2y—8¢c) by (1)
Ex. 8. 92?4+ 12ab — 902 — 4b*=(32)% — (3@ — 2b)?
=Bz+3a—-2b)(32z—8a+2D).

In factoring a given expression, it may be necefsa.ry to use the same
principle two or more times in succession as below :

Ex. 4 (22 — )2 + 22)% — 4 2222
=@ -y + 22+ 2x2) (22— Yyt + 28— 222)
=[(z+2)? - ][z - 2)* — 9]
=z+z+@E+z-E-z2+9E—-2-9).
Whenever n is even, a* — b should be factored as the
difference of two squares.
Ex. b. 2% — at=(2%)? — (a?)?
=(2? + a?)(2? — a?)
=@+ a®) (@ + a)(x — a).
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Exercise 58.

Factor each of the following expressions:

o A S

16.
17.
18.
19.
20.
21.
22.
30.
31.
32.
38.
34.
365.
3e.
37.
38.
41.
42.
43.
44.
53.
64.

a?—9. 6. 9a*—16%°  11. 8ab*—18at
25 a? — b 7. 819 —92% 12. 10823 — 3.
16 — % 8. 362°—494%. 13. Ta*— 2825

2 -9y 9. 4a%'—9¢. 14. 322*—8a%y.

6427 —490%. 10. 4oy’ —92% 15, Tay?—Ta™’
a?+2ab+0—c 28. 492° —1 4+ 142y + o>
a2 —2ab+0—C 24. a’— 162+ 6ab+4 90
-0 —2bc— 2 26. 2*—9y’+10ax+ 25al.
-0 +2bc—c 26. V¥*—at—42*+4azx.
P+aoy—at4+ 47 27. 98— 42— 9u*+12ax.
?—14+10cx+25¢. 28. 4a’—y*—92° 4+ 6y
14+2ab—a*—0 29. ¢ —25a*— 9V + 30 ab.
AP+ +2ab—c—d*—2cd.

A+ —2ab—2—y —2ay.

mé 4+ n® — 2mn — a® — b* + 2 ab.

a®+ n?—2an — b® — m® — 2bm.
16a’+8ax+z’—2by—-\b’—-y’.

90 +12ab+ 40— (c+z—2y)>~
(a+b+c)——y'+ 22y

(+ 3y —49 39. bz+2y)—(Bz—y)
90— (Ba—-5b) 40. 2z+a—3)*—(3—22)%
fzat — S b’ 45 5—80at 49. i — o
}$a0* —%ayt. 46. ar'—16b%" 60. 9" — 23,
1624 — ot 47, o — g Bl. 4ot — g,
at—81. 48. ot gl g, gy ghyl
P+ +2+ 22y + 2024+ 2y2 — 16.

a+400+ 9 —4ab+6ac—12bc — & — 22y — o,
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142. Binomials of the type-form a” — 6", where n is odd."
When n = 3, by § 129 we have °
a®— b° = (a — b)(a’* + ab + &).
Ex. 1. 343 —8a3=(7)2— (2a)8
=T —2a)[T+17(2a)+(20a)7]
- =(T—2a)(49 + 14a + 4a?).
Ex. 2. 1256 — 8 a5b8=(5)8 — (2 a%?)3
' =(5 — 2 a%?)[52 + 5(2 a?b?) + (2 a?2)3]
=(6 — 2 a%?) (26 + 10 a%b? + 4 adh).
Ex. 3. (1—22)3 —6423=(1 —22)% — (42)8
=(1-22—42)[(1—-22)2
+(1-22)(42)+@d=2)%]
. =(1-62z)(1+1222).
‘When n = 5, by § 129 we have
@’ — b= (a — b)(a* + a®b + a®6® + ab® + b%).
Ex. 4. 2a°—64b5=2[a’ — (2})5)
=2(a —2b)[a* + a¥2 b) + a%(2 b)?
+ a(2b)% +(2b)4]
=2(a — 2 b)(a* +2a% + 4 a?? + 8 ad®+ 16 b*).
From identity (1) in § 129, we have
a® — bt = (a — b) (an—l + aw—ﬁb + au—8b2 + cos + abn-l + bu-l)’

when n is any positive integer.

143, Binomials of the type-form a” 4 67, where n is odd.
‘When n = 3, by § 130 we have
a® + b® = (a + b) (a® — ab + b?).

Ex. 1. 8234 278=(22)%+(39)%
=2z +39[C2)?-(22)B+(By)?]
=2z +3y)(422 —6zy +992).
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When n = 5, by § 130 we have
a® 4 ¥ = (a + b)(a* — a®b + a®* — ab® + bY).
From identity (2) in § 130 we have, when = is odd,
a*+ b= (@+bd)(a ' —a"+ oo —ab™ T+ 0.

Hxercise 57.

Factor each of the following expressions:

1. -1 9. 216 — 2 17. 32a°+1.

2 2742 10. 27Tn+41. 18. a'h® 4 243.

3. a*— 8. 11, 82 —27a%  19. 10242° — 329
4. 125 —a®®. 12. 2V —a®/8.  20. & —y.

5. 241, 13. 40a®— 1358 21. o' —1.

6. ¥ +2T. 14. 2Tn*+64¢% 22, o + 128

7. 8224+ 64. 15, ¥ —1. 28. 1— (z+ )%
8. 343—8a® 16. 2 —32. 24. 28—

When n is even, z* — y» should firs¢t be factored as the difference of
two squares (§ 141).

B —P=(@ -y (@ + ) §141
S@-NE+z+)(@+y) (@ -2y + ).

25. 28 —1. 28. 2% — a%® 81, 8la'2t—1.

26. a°®— 64. 29. z*— 1654 32. a®— 72908
27. 2* — 6445 30. 162 —8la'  83. 642°— 72945
34. (3+2a)*—64. 38. a'z*— (b— o)

35. @®—(z+y)’ -89, oyt — (zy+1)%

36. 25— (a — b)’. 40. 162 — (y + 22)%

37. &> — (z—20b)". 41, 272" — (a+ D)%
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144. A trinomial of the type-form a* 4 ha%®+ b* can be
factored by writing it as the difference of two squares.

Note. The two factors of at + ha2b? + b* are real and equal when
h = 2; real and unequal when k < 2, and complex when A > 2.

In all the examples given the factors are real and unequal, but as
some of them involve surds this article and the next should be omitted
until Chapter XVIL has been studied.

Ex. 1. Factor m* 4+ m3n2 4 nt,

Adding m2n2 — m2n?2, we obtain

mt + nt + m2n3 = mt 4 nt + 2 m3nd — mnld

= (m? + n3)? — (mn)?

= (m3 + n? + mn)(m2 + n3 — mn).
Ex. 2. mt—06mnd4 nt=m*+ nt—2m¢n3 — ImIn?

= (m? — n2)? —(mn/3)2

= (m? — n? + mn\/8) (Mm2—n2—mn/3).
Or, mt — bm3n2 + nt = mt + nt 4+ 2mn2 — Tm?n3

= (m?+ 22+ mayT)(mP+ ni—mn/7).

Ex. 3. 42t +9at —21a%? =42t + 9at — 12 a%? — 9a%?

=(222— 3a?)? —(8ax)?

= (222 —3a?+ 3az)(2 22—8 a%—3 az).

. Exercise 58.

Factor each of the following expressions :

1. o+ 2+ 1. 9. 252t — 44 2% + 164
2. 2 — 32749, 10. 424 —4ahP 4+ 998

8. o494+ 25. 11. 92 —122%* 4 16~
4. 24624 25. 12. 162 — 2% + o~

5. o' —11a%®+ o’ 13. 252 —292%° 4+ 444
6. 2+ (A —APYP+4y 14 o — Py A

7. +y)+@+y>*+1. 15. o' 4+ 2y 4 oA

8. 9af+3a% 4y 16. 2+ 2yt +
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145, Binomials of the type-form a” + b7, where n is even,
(i) a'+d=a'+2a% +0b*—2d%?
 =(a 40— (aby2)
= (a® + b* + ab+/2) (a* + b* — ab/2).

This method can be employed whenever = is a multiple of
4, as when 7 is 8, 12, 16, ete.

(i) a®+ b= (a®®+ (v°)?®
= (a® + ¥*)[a* — a™* + b*)
= (@ + B)[(@* + b9 — (ab/3)7]
= (o + V%) (a® + b* + ab+/3) (a® + b — ab+/3).

This method can be employed when = is even and one
of its two factors is odd, as when =» is 10, 12, 14, etc.

Bxercise 59.
Factor each of the following expressions:

1. 2 4+1. 5. 28 —ad 9. 2+ ab
2. ot 4t 6. 284 1. 10. 2 +1.

8. 162t +at 7. 28464, 11. 2° 4 a"
4, -1 8. 2°+chl 12, 2%+ a2

148, Perfect cubes. The converse of identity (1)in § 124 is
a®+ 3a® + 3 ab® + b= (a + b)>.

Hence, if the four terms of the cube of a binomial are arranged
according to the powers of scme letter, their extreme terms are the
cubes of the terms of the binomial.

E.g., if 64 a3 — 144 a2b + 108 gb? — 27 ® is a perfect cube, it is the
cube of 4 a — 3 b; for when its four terms are arranged in descending
powers of a, the extreme terms are the cubes of 4¢ and — 3}
respectively. B

_ The expression is a perfect cube ; for

(4a—30)3=64qa? — 144 a% + 108 ad? — 27 b3.
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If" a perfect cube which contains only three different
powers of some letter is arranged according to the powers
of that letter, its factors will often become obvious.

E.g., if we arrange the expression,

ad® + b3 + ¢® + 3 a% + 3 a’ + 3 ab? + 8 ac? + 6abe + 3 b%c + 3be?,
according to the three different powers of a, we have

a*+3a2(b+c)+38a(d®+ c®+ 2adb)+(b® + 3 b% + 3 be? + %),
or a®+3a3(b+c)+3ad+c)2+(b+c)3,
which is seen to be (a + b + ¢)3.

Exercise 60.
Factor each of the following expressions:
1. a*+3a*+3a+1. 3. 8m5—12m’+6m—1.
2. *+622+1254+8. 4. a*2®— a2’ + Saxy' — 9~
5. 64a®+ 108 ab® — 144 a% — 27 b2
8. 2*—24a%y +192xy® — 51242

7. @+ 6a%—3al+ 12 ab® — 12 abo + 3 act+ 8 B —12 be
+6bc— ¢

—1 0. 84!’—4z’y’+§zy'_;_/;.

8. = -2 422
10. 24 b%? — 36 b%® + 18 b% — 3 b

11. a®*+4+2ab+4c2+4ac+4bc+ b

12. 202 + 4ozt — day's + 202 + 2 ayt — 4 azd,
13. 3ba* — 6 ba'y + 12 a®b — 12 aby + 3 by® + 12 aba.
14. o’ — 9 a%®y + 27 a’xy® — 27 a¥yp.

15. #*+ 32y + 3xy* — 3ax® + y* — 3ay® — 6axy + 3a’y
+ 3a*% — a
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. 147. Summary. To factor any given expression by the
foregoing methods, the pupil should first note whether the
expression is in any one of the following forms :

(i) A sum of terms having a common factor. § 136
(ii) A perfect power. §§ 137, 138, 146
(iii) A difference of squares. ' § 141

(@iv) The type-form
_ a4+ bx+c or 2+ px+q. §§ 139, 140
(v) The type-form a*—b" or a*+ b", n odd. §§ 142, 143
(vi) The type-form
at+ ha®* + b* or a*+ b" n even. §§ 144, 145

When a factorable expression has no one of these forms,
our first aim is to reduce it to one of them. In this reduc-
tion much will in the end depend upon the ingenuity of
the student. No definite directions which are applicable to
all cases can be given. The two following devices will in
many cases prove useful :

(i) The factors of an expression will frequently become
obvious when the expression is arranged in ascending or
descending powers of one of its letters, particularly when the
expression contains only one power of that letter.

Ex. 1. Factor az + by + bx + ay.
Arranging in powers of z, we have
ax+by+bx+ay=(a+b)z+(a+b)y
=(a+b)(z+)-
Ex. 2. Factor az® —2z—a+ 1.
Arranging in powers of a, we have
a—z—a+1=*-1ae—-(x-1)
=@—-Dla@?+z+1)-1]
=@ —1)(ax?+ ax +a—1).
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Ex. 3. Factor a?2(x —y)+ 22 (y— a)+ y%2(a —x).
Arranging in powers of @, we have
the given expression =a?(z —y)—a (22— YD)+ 2y (x —9y)

S@-yla—(z+y)a+zy]
=@-y)(@a—-2z)(a—Y).

(ii) Another device consists in adding to the given expres.

sion some form of zero; as, y¥* — 3% or —141.
Ex. 1. Factor 22 —8y2 —22 — 22y + 4 y2.
Arranging in descending powers of z and adding y? — %2, we obtain
the given expression =22 — 22y + Y2 — (413 + 22 — 4 y2)

=-9?-(2y—2)?
=SE-y+2y-2)(z—-y-2y+2)
=(+y—2)(x—3y+2).

Ex. 2. Factor 28 — 3z + 2.

Adding —1 + 1, we obtain

-3z +2=@*—-1)-38(x—-1)

=(x-1)(@+2+1-3)
=@-1D(-1)(z+2).

Ex. 3. Factor 28 — 322+ 4.

Adding 22— 22, or putting — 222 — 22 for — 3 22, we obtain

28 —822+4=28—-222— 23+ 4

=x—2)22—- (22— 4)
=@x-—-2)(x2—-z—2)
=@-2)@z-2)@+1).

Exercise 61.
Factor each of the following expressions :
1. a®+ ab + ac + be. 4. Mx — my — nx + ny.
2. a*®+ acd +abc+bd. 5. 3axr—bxr— 3 ay + by.
3. a®*+3a+ac+3ec. 6. 62>+ 3xy — 2 ax — ay.



12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

41. o' 4 2Py + a2 4y
42. z(x+2)—y (Y +2).
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ax® — 3 bxy — axy + 3 byl

8. 2a2®+ 3axy — 2bxy — 3.
9. ama? 4 bmxy — anzy — bny’.

10. ax —bx+ by + cy—cx —ay.

11. a’z + abz + ac + aby + by + be.
P+ —4x—4. 23. 22* 384222 +43.
b—2—b5x+1. 24. 2* + ba® — a’*x — a’b.
ax® + b2* + a + b. 25. a’b®—a?—b* 4 1.
o + by’ + (a +b)xy. 26. ba*+ ax’+ bz +a.
a4+ at+ 41, 27. B —y*+az—y2
at+ a?b? — v — 28. 1+ bz — (a*+ ab)a®
a?—a—c+ec. 29. a’c® + acd + abc + bd.
a?— b — (a — b))% 30. ac + bd — ad — be.
a® — b + be — ca. 31. ac®+ bd® — ad® — b,
ar*+ 24+ a4+ 1. 82. a’r— b’z 4 a% — b
B?—-522+2—5. - 83, @' — ' —a¥y' + P

34. a’® — a%f — b%2® 4 DXL

85. acx® — bex + adz — bd.

36. &d® — & — a’c*d® + ad.

37. 1—abs®+ (b —a®)a’

38. a’—b*+ ¢ —d'— 2 (ac — bd).

39. 4a®®— (o + b*— >

40. (@*—b'+c—d)?'— (2ac— 20d)*

43.
44.

ot — 14 252 4 A
2y — o' — g+ 2
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45. 1—2ax— (c— a®)2* + acs®.
46. az(y® + b°) + by (b2 + a¥).
47. 22 —42%y — %2 + 22y 4+ 22y2 — y*2.
48. (P*+4x)—2(s*+4x)—15.
49. (@*—2a)* —2(a*—2a)—3.
50. (F*+42+8)°+3zx(’+42+8)+24%
51. o®—642*+ 16.
52. «® —152° 4 250. 53. o'y 4+ 13a% + 4244
54. 362+ 6% — 244
65. Resolve a° — 64 a® — a® + 64 into six factors.
56. Resolve 2’ + 2* — 16 2* — 16 into five factors.

. 57. Resolve 1627 — 812® — 16 2* + 81 into five factors.
58. Resolve 2 + 2® + 64 2% 4+ 64 into four factors.
59. Resolve 2° + 2 — 82%® — 8 y8 into four factors.
60. Factor a*(b — c) 4+ b*(c — a) + ¢*(a — ).

148, Formation of equations with given roots.
The linear equation whose root is 4 is evidently z — 4 =0. Q)
The linear equation whose root is — 2 is evidently z+2=0. (2)

Multiplying together the corresponding members of (1) and (2), we
obtain the quadratic equation (z — 4)(x +2)=0. (6))

When z = 4, (3) becomes the identity (4 — 4)(4+2)=0.
When z =— 2, (3) becomes the identity (2 —4)(—2+2)=0.
No other value of z will render either factor in (3) equal to 0.
Hence 4 and — 2 are the two and only roots of (3).

The quadratic equation (3) therefore is equivalent to, i.e. has the
same roots as, the two linear equations (1) and (2) together.

This example illustrates the following principle:
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The linear equations

z—a=0, t—0=0, x—c=0, ... @
are jointly equivalent to the equation
@—a)@—=b)(x—c):-=0. 2)

Proof. The root of any one of the equations in (1)
renders one of the factors in (2) zero; hence by § 74 it
satisfies (2).

Conversely each root of (2) must render one factor of its
first member zero, and hence be a root of one of the equa-
tions (1).

Moreover, equations (1) have the same number of roots
as equation (2).

Hence the linear equations (1) are jointly equivalent
to equation (2).

Ex. Form an equation whose roots are 1, — 8, and 4.

The linear equations whose roots are 1, — 3, and 4, respectively are

2—1=0, 24+8=0, z—4=0. (¢))

By § 148 the equation which is equivalent to equations (1) is

@-1)(x+3)(z-9H=0,
or 22 -223—-112+12=0.

Observe, (i) that the second member of each of the equa-
tions (1) and (2) is 0, (ii) that equation (2) is formed from
equations (1) by multiplying together their corresponding
members, and (iii) that equations (1) are formed from (2)
by putting each factor of its first member equal to 0.

Exercise 62.
Form the equation whose roots are:

1. +4, +3. 5. —2 3. 9. 1, -2 —3.
2. —4, +3. 6. —2,—3.  10. —1, -2 —3.
3. 2 3. 7. -1, 4. 11. 3, —4, 5.

4. 2 -3 8. 1,2 3. 12. 1, —2,3, —4.
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149, To solve a quadratic or higher equation we must find
its equivalent linear equations.

For use in solving equations the principle proved in § 148
can be stated as follows:

If one member of an equation i8 zero and the other member
8 the product of two or more integral factors, the equations
Jormed by putting each of these factors equal to zero are
together equivalent to the given equation.

E.g., the equation (x —2)(z+3){(x —4)=90
is equivalent to the three linear equations,

2—-2=0,24+8=0, z—4=0.

Ex. 1. Solve the equation 22 =42z + 12, ¢))
Transpose, 22 —-42—-12=0.

Factor the first member, (z + 2)(z —6)=0. (¢))

Equation (2) is equivalent to the two linear equations, )
z4+2=0,2z—-6=0.

Hence, the roots of (2), or (1), are — 2 and 6.

Ex. 2. Solve the higher equation % + 23 = 6. )
Transpose, 22+ 22—-62=0.
Factor, z(z—2)(x+ 3)=0. @)

Equation (2) is equivalent to the three linear equations,
z2=0,2—-2=0,2+3=0.
Hence, the roots of (2), or (1), are 0, 2, and — 3.

Ex. 3. Solve the equation 928 =4 z. @
Transpose, : 9% —4x=0.
Factor, - 2Bz +2)(3z—2)=0. )

Equation (2) is equivalent to the three linear equations,
=0, 32+2=0,8z—-2=0.
_ Hence, the roots of (2), or (1), are 0, — ¢, and §.
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Ex. 4. Solve the equation 4 z* + 9 = 37 3. (¢))
Transpose, 424 —37224+9=0.
Factor, (2z-6)2z+6)2z—-1)2z+1)=0. (€))

Equation (2) is equivalent to thie four linear equations,
22—-6=0,224+6=0,22-1=0,22+1=0.
Hence the roots of (2) or (1) are 3, — 8, }, and — }.
These examples illustrate the following rule for solving a
quadratic or higher equation in one unknown:

Transpose all the terms to one member.

Resolve this member into its linear factors in the unknown.

Solve the equations formed by equating to zero each of these
linear factors.

The problem of solving an equation is the converse to that
of forming an equation with given roots.
If we multiply together the corresponding members of equations
2z—8=1and z+ 3 =16, @
we obtain ‘28— 9 =16, or 27 — 25 =0. @)

The roots of equations (1) are 4 and 13, and the roots of (2) are 6
and — b.

Hence both roots of equations (1) are lost by multiplying together
their corresponding members.

Putting equations (1) in the form

z—4=0and z—-13=0,
and then multiplying them together, we obtain an equation equivalent
to equations (1).
This illustrates the importance of the form of the equations in § 148.
Exercise 63.
Solve each of the following equations:
1. #—Tz=0. 4. #*+4+122=-35.
2. 249x=0. 5. @®*=6z+91.
8. P@=42+12 6. ¥*+12=T2.
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7.

8.

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
82.
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224+ 20=122.
2420 =9z
24+ 28=11z.
24150 =25 .
322=102— 3.
322 +112=20.
4224 212=18.
32 —22=96.
1524 42=3.
62*~Tx=3.
19z2=4—-52
52) —42=233.
2?2+ ax =42 al.
22— 20 az =96 a®.
82 +2=30.
2+22=62>
21 +z=222
344 35=22x.
6 2* 4 55 . = 50.
62°+6=132.

192*—39r=—2.

1583 — 2 ax =a?
172*4+8=T0x.

2122410z =—1.
6 =11kx+4TK.
2 —23azx=—132a%

33.
34.
35.
36.
37.
38.
39.
40.
41
42.

43, 2% —

44.
45.
486.
47.
48.

. 49.

50.
61.
52.
53.
54.
55.
56.
57.
58.

22— 3a=
1224 3a*=
1322 4+ z=1.

2 4 600 a? = — 49 az.
?—322=10=.
162*+32=162>
1102+ z =212
52*=82"421z.
32z—-3s=102>
24 2a% =3 ax’
2?4+ 9=9z.

P4 22— 162 =32.
*—262%425=0.
436 =13 2%

3624 +1=132"

?— a4 4a’P=4c%
2+2at=
3502 =92 + 6 ba.
2?—2ax+44ab=20bx.
38 —2ar —bx=0.
?—2ax+8x=16a.
36 2% — 3552 =12 ba.
#®+20—c)z+F=2bc
2?—2(a—b)x+b'=2abd.
(a—=z)*+ (x—b)*=(a—Db)
s+ d=42+4.

5azx.
13az

3azx.
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59. baf—22=5zx—1. 65. b2’ + axr® =bz + a.
60. B*—z=c—c. 668. -3 =42—12.
61. a*— b?’=cx— be. 67. 2*4+36=13a"

62. 22*—32'=22—3. 68. 42*4+9=1323

63. 2+ ba® = a’*x + a®. 69. *+222=16z+ 32.
64. *+5=52+z. 70. 922 +2Ta' =2+ 3.

71. Find two numbers one of which is three times the
other and whose product is 243.

72. Find two numbers whose sum is 18 and whose product
is 77.

73. A certa'xin number is subtracted from 36, and the same
number is also subtracted from 30; and the product of the
remainders is 891. Find the number.

74. A rectangular court is 10 rods longer than it is
broad; its area is 375 square rods. Find its length and
" breadth.

756. How many children are there in a family, when
eleven times the number is greater by five than twice the
square of the number ? -

76. Eleven times the number of yards in the length of a
rod is greater by five than twice the square of the number
of yards. How long is the rod ?

77. The square of the number of dollars a man possesses
is greater by 1000 than thirty times the number. How
much is the man worth ?

Ans. The man may have $ 50 or he may owe $ 20.

78. Find two numbers the sum of whose squares is 74,
and whose sum is 12.



CHAPTER XI

HIGHEST COMMON FACTORS AND LOWEST COMMON
MULTIPLES

150. - A common factor of two or more expressions is an
expression which will exactly divide each of them.

E.g., a — z is & common factor of b(a — z) and a2 — 23,

161. Two or more expressions are said to be prime to one
another, when they have no common integral factor except 1.

E.g., zy and vz, 3a? and 7 ¢%, or 23 + y3 and 2? — y?2, are prime to
each other.

162, The highest common factor (H.C.F.) of two or more
integral literal expressions is the expression of highest -
degree which will exactly divide each of them.

The numeral factor of the H. C. F. is the greatest common
measure (G.C.M.) of the numeral factors of the given
" expressions.

E.g., x%328 is the H. C. F. of z%22* and 23y423,
Again, 10 z3yz is the H. C. F. of 20 ztyz and 30 z3y328.

163. H.C.F. by factoring.
Ex. 1. Find the H.C. F. of 6 a2b3c%d3, 4 a%c5d, and 8 atbcSd®.

The H.C.F. of these expressions cannot contain a higher power
of a than a2, a higher power of ¢ than ¢3, and a higher power of d
than d; and the G. C. M. of the numeral factors is 2.

Hence the H. C. F. of these expressions is 2 a%c%d.

Observe that the power of each base in the H.C.F. is
the lowest power to which it occurs in any of the given

expressions.
150
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Ex, 2. Find the H. C.F. of a*b? — a2b* and a*b® + a®b*.
ab? — a%bt=a??(a + b)(a — b);
ath® + atht=ad%(a + b).
»~ H.C.F.=a*3%(a + b).
Ex. 8. Find the H. C.F. of 3 a*+ 15 a3 —72 a2b?, 6 a®*—30 a%b+-36 abd?,
and 8 % — 16 a*db — 24 a%b3.
3at+15 a®h — 72a22=38.a%(a + 8 b)(a — 3b);
6a® —~3a? + 86ab?=6.a(a—2b)(a —3D);
8a — 16 ath — 24 a%h*=8 . a¥(a + b)(a — 3 b).
s H.C.F.=a(a — 8b).
Hence, to obtain the H.C. F. of two or more expressions,

we find the product of their common factors, each to the lowest
power to which it occurs in any of them.

Exercise 64.
Find the H.C.F. of the following expressions :
ab?, a%. 10. ™), grlymtl grtiym
a'd®, a®h, ab. 11. 22438 2 —
a®?, ab’d®, a’b’z. 12. a®*—27,9—a’
3al 2a% 44a° a’ 13. a*— o (a* + O
102% 152° 5. 14. o — ¥V, az — ba.

10 2%, 202%°, 302%%. 15. 2 —1, 2 — 1.

3aty?, 15 2y, 10 2%~ 16, a®*+8,a’—a—6.

35 a*p, 20 ayt, 15 2y%a. 17. a*+4ab, a*+ V.

Sy, Byl ayrL 18. 2*+32+2, #*+62+48.
19. 2+1,2+ar*+az+ 1.
20. 24+ Ta 412, 24+ 6%+ 8.
21. *+43a% + 2z, o + 6 2%y + 8o

® ® 3 e o bk ow N ¢
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22. 3a’—4dab+-b%, 4a*— 5a’h + a®’

23. a®—a'z, a® — a2, a* — a2’

24, *—1,2°+1,2*— 22— 3.

25. 288 —T2+4+3,322—Tx—6,42* - 1Tz 4+ 15.
26. 122 +2—1,1524+82+1,62° 4112+ 3.
27. 222 +92+4,2224+ 112+ 5,222 — 32— 2.
28. a'z — a’bx — 6 ab’x, a’bx® — 4 ab®® + 3b%
20. @ —ay, P+ ay+ay+y, 2+

164, The polynomial factor of the H.C.F. of two expres-
siohs can always be found by a process analogous to that
employed in arithmetic to find the G. C. M. of two numbers.

This process depends upon the two following principles:

(i) If one integral expression is exactly divisible by another,
the second s the H. C. F. of the two expressions.

E.g., (28 — ¥+ (22 4+ 2y + y?) =z — y; hence by definition x2 +
2y + Y3 isthe H.C. F. of 28 — y® and 22 4 2y + 2

(ii) If one integral ea,p;‘ession is divided by another (of
the same or lower degree in the letter of arrangement), and

if there is a remainder, the H. C. F. of this remainder and the
divisor 18 the H. C. F. of the first two expressions.

E.g., the remainder obtained by dividing the expression

28 —223—-652+46, or (x—1)(z+ 2)(z—38), (¢))
by 2-8z+2, or (zx—1)(z—2), @)
is —4z+4,0r —4(z—1). ®)

The H.C.F. of the remainder (8) and the divisor (2) is evidently
the same as the H. C. F. of the two expressions (1) and (2).

Proofof (ii). Let A and B denote any two integral literal
expressions arranged in descending powers of some common
letter, the degree of B not being higher than that of A.
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Let @ be the quotient and R the remainder obtained by
dividing 4 by B;
then A=BQ+ R. @

From (1) R=A4-BQ. )]

Every factor common to B and R is by § 136 a factor of
BQ + R, or A; hence every factor common to B and R is
common to 4 and B.

Again, every factor common to 4 and Bis by § 136 a
factor of A — B@, or R; hence every factor common to 4
and B is common to B and R.

Hence, the H. C. F. of B and Ris the H.C. F. of 4 and B.

The following example will illustrate the use of principles (i) and
(ii) in finding the H. C. F. of two expressions:

Ex. 1. Find the H.C. F. of 224 2% — 2 and 23 4 222 — 8.

Dividing 23+ 222—3 by 2%+ 22 — 2 we obtain the remainder
z2—1.

Hence, by (ii), the H. C. F of the remainder 22 — 1 and the divisor
o8 4 22 — 2 is the H. C. F. of the two given expressions.

Dividing 8 + 22 — 2 by 22 —1 we obtain the second remainder
« — 1. Hence, by (ii), the H.C. F. of the second remainder z — 1, and
the second divisor 22 — 1 is the H.C. F. of 28+ 23— 2 and 22— 1,
and therefore the H. C. F. of the two given expressions.

But z2 — 1 is exactly divisible by = — 1; hence, by (i), z—1 is
the H.C.F. of 22 —1 and = — 1, and therefore, by (ii), of the two
given expressions.

The work can be arranged as below :

28422 —-2)28+ 222 —-3(1

B4+ 22-—2
B-DP -2 +1
28—z
2 +z—2

x? -1

z-1)x2—-1(x+1
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Before employing the method given above, all monomial
factors should be removed from the given polynomials, and
the H. C. F. of these monomial factors found by factoring.

Ex. 2. Find the H.C. F. of
8%t + 8c%3 — 6c2x and 6 c2® + 12 czt — 18 22
8¢t + 3 c%? — 6 A =8 cXr (28 + 28 — 2),
and 6 cx® + 12 cxt — 18 cx2 =6 c2? (2® + 2 23 — 3).
The H.C.F. of the monomial factors is 3 cx; and by example 1,

the H. C.F. of the trinomial factors is z — 1.
Hence the H. C. F. of the given expressions is 8 cx (z — 1).

166. The H. C. F. of two expressions will not be changed if
either expression is multiplied or divided by a factor which is
not a factor of the other expression.

Proof. The factor introduced, by multiplication, into one
expression is not a factor of the other expression, and there-
fore will not be a factor of their H. C. F.

In like manner, the factor removed, by division, from one
expression is not a factor of the other expression, and there-
fore would not be a factor of their H. C. F.

The following examples illustrate how this principle frequently
simplifies the work of finding the H. C. F. of two expressions.

Ex. 1. Find the H.C. F. of
2028 +8ax? — 16 az + 48 ¢ and 4a%* — 4 a%® + 32a% — 8242
4akt—4a%® 4+ 82a% —82al=4a?(2t — 23+ 82 —8),
and 2ax8 +8ax?—16ax +48a=2a(x® + 423 — 8z + 24).
The H. C. F. of the monomial factors is 2 a. ‘

To find the H. C. F. of the polynomial factors we arrange each’
expression in descending powers of z and proceed as in § 154.

28 +422 —8x+24)2t —28482—-8(x -5
+428— 8224242
—b28+ 822—16z— 8
— 65283 —2022 4+ 402 — 120
2822 — 68+ 112=28 (22— 22 + 4)
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By § 166 we reject the monomial factor 28, and continue the process
with 23 — 2z + 4 as the second divisor.

B—-2z44)2+423 -8z +24(z+6
¥ —-223442
6x2—-12z2424
6z2—-12x4 24

(i),x’ 2z + 4 is the H. C. F. of the first divisor and t.he first
remainder, and hence, by (ii), of the polynomial factors.
Therefore the H. C. F. sought is 2a (22 — 2z + 4).

Ex, 2. -Find the H. C. F. of
222 —6x+2 and 284423 -4z — 16,

Since 2 is not a factor of 222 — 6 + 2, we can by § 166 multiply
23+422—4z—16 by 2, and thus avoid the inconvenience of
fractions.

The work may be written as below :
222 —bx+2)x3 4422 — 4216
Multiply by 2, 2

228 +822— 82-—82(x
228 — 622+ 22

1822 — 10z — 32

Multiply by 2, 2622 — 20z — 64 (13
2622 — 656z + 26
Divide by 45, 46)46z — 90

z—-2)222—-b6z+2(2z—-1
Hence the H. C.F. is z — 2.

Ex. 3. Find the H. C. F. of
228 422 —z—2 and 323 —223 4 2 —2.
Multiply the last expression by 2.

278+ 22— —2)623 - 423 +22—-4(8
62 +322—-3z—6

—-T7234+b6x+4+2
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Multiply the first divisor by 7.
— T 462 +2)142° +723—Tz—14(—22
1423 — 1022 —
1722 — 8z — 14
Multiply this remainder by 7,

11923 — 212 — 98 (— 17
11922 — 862 — 84
Divide by 64, 64) 642 — 64
z—1)—T234+624+2(—T2—-2
—T224 7Tz
—2z+4+2
—2x 42

Hence the H: C. F. sought isz — 1.

In the above process of finding the H. C. F. of two inte-
gral expressions, each remainder is ev1dently of a lower
degree in the letter of arrangement than the preceding one.
Hence unless at some stage of the process the remainder
is zero, we must come at last to a remainder which does not
contain the letter of arrangement. In this case the given
expressions have no common polynomial factor containing
that letter; for by § 154 this last remainder contains all
the polynomial factors common to the given expressions.

166. By the foregoing principles we have the following
rule for finding the H. C. F. of two expressions:

Remove from the given expressions all monomial factors,
and set aside their H. C. F. as a factor of the required H. C. F.

Divide the expression of the higher degree arranged in
descending powers of the common letter of arrangement by the
other expression; if both expressions are of the same degree
either can be taken as the first divisor.

Divide the first divisor by the first remainder; the second
divisor by the second remainder; and so on, until the last
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remainder i3 zero or does nmot contain the letter of arrange-
ment.

If the last remainder is zero, the last divisor is the H. C. F.
sought; if the last remainder is not zero, the two expressions
have no common factor in the letter of arrangement.

Any dividend can be multiplied by any number which is not
a factor of the corresponding divisor; or any divisor can be
divided by any number which i3 not a factor of the correspond-
ing dividend.

167. Any factor common to three or more expressions
must be a factor of the H. C.F. of any two of them.
Hence, to find the H. C. F. of three expressions, we can
first find the H. C. F. of any two of them, and then find the
H. C. F. of this result and the third.
Ex. Find the H. C. F. of
PB4+ —2z—1, 284+ 823 —2—38, and 23+ 22 -2,

The H. C. F. of the first two expressions is 22 — 1.

The H.C.F.of 22 —1 and 23+ 23 —2 is z — 1.

Hence the H. C. F. sought is z — 1.

Whenever the given expressions can be factored by inspection, their
H. C. F. should always be obtained by factoring.

Exercise 66.
Find the H. C. F. of the following expressions :
?—5z+44, -5+ 4.
?—5xy+4y, -5y + 4l
26°—bz+2, 422 +122* —2— 3.
@ —ba?— 992+ 40, 2* —62*— 86z 4 35.
2+4+222—-82—16, P+ 32— 8z —24.
?—P—52—-3, —4aF—112—6.
2+ 32 —8x—24, *+32*—-32—9.

R i e
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8. 4+ 32y —102", o' — 3oty + 24°
9. 2a*—-ba+2 2a*—3a*—8a+12.

10.
11.
12.
13.
- 14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

20 —5b+2, 120*— 862 —3b + 2.
a®—bar4Tar* —32% a®*—3ax*+ 222

*—-28 427, 4P -3 —x4 2.

?—3d’x —2a% 2 —ar®— 44dd

208 4+42°—-Tx—14, 622 — 102" — 21 =z + 35.

20 -2+ 2+ 30 —6, 42— 222+ 32 —9.
3+ z2—-2, 28— —2—3.

3 —-3ar’+2a% —2a% 32+ 12ax* 4+ 2a’x + 8a’.
38— 32y +ay*— P, 42°y —Say*+

122 — 152y 4+ 33, 62° — 6 2%y + 22> — 2%

10224+ 25a2° — 50 42°+ 9az® — 2a% — o
6a*+13d’z—9ax*—-102% 9a*+12a%c—11 ax*—102°
2044922414243, 24+ 92+ 147+ 32~

3+ -T2+ 2242, 2044+ 32°— 22+ 122+ 5.
28 —11224+11z+4, 224 —-32*+Ta* —122—4.
2004+ 42248322 —22—2, B3 +622+ TP+ 22+ 2.
2?—92—10, a®* — T — 30, 22 — 112+ 10.

P42 —6 P —22—x+2 P +322—6z—8.
2?4+T72*+52—1, ©*+32—-32—1, 322452242 —1.

LOWEST COMMON MULTIPLE.

168, A common multiple of two or more integral expres-
sions is any integral expression which is exactly divisible
by each of them.

The lowest common multiple (L.C.M.) of two or more
integral literal expressions is the integral expression of
lowest degree, which is exactly divisible by each of them.
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The numeral factor of the L.C. M. is the least common
multiple (L.C.M.) of the numeral factors of the given
expressions.

E.g., a*b? is the L. C. M. of a®h, ab?, and a2b3.
Again, the L. C. M. of 12 axy32? and 15 bdy* is 60 abdxytz®.

169. L.C. M. by factoring.

Ex. 1. Find the L. C. M. of ab?, a%bc®, and ab3ch.

The L. C. M. of these expressions cannot contain a lower power of
a than a3, a lower power of b than b2, and a lower power of ¢ than ¢5.
Hence, the required L. C. M. is a%b%c5.

Observe that the power of each base in the L.C. M. is
the highest power to which it occurs in any of the given
expressions.

When the expressions involve numeral factors, the L. C. M.
of these factors should be obtained as in Arithmetic.

Ex. 2. Find the L.C. M. of z?+72+412, 224+ 6248, and
623 4 20 z + 20.

B4+ T7z+12=(+38)(= +4);
224+6z+8=(x+2)(x+4);
bz2 4202 + 20 =5(x + 2)3.
& L.C.M. =56z +2)%(z + 3)(z + 4).
These examples illustrate the following rule :

To obtain the L. C. M. of two or more integral expressions,

multiply the L. C. M. of their numeral factors by the product of
" all their prime literal factors, each to the highest power to which
it occurs in any one of them.

Proof. The L.C.M. by definition contains each factor
the greatest number of times that it occurs in any one-of
the given expressions.
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Exercise 66.
Find the L. C. M. of the following expressions:

1. 44, 102y’ 4. o 23z
2. 24 b, 60 a%b'et 5. 214% To*(z 4+ 1).
3. 9abiry, Sy 8. 62— 22 92°—3u.

7. @42z, @+ 32+ 2.
8. @»—5x+4, a?—6x+8.
9. @*+4zx44, 2 +5x46.
- 10. 2—2—6, FP4+2—2, P-4+ 3.
11. 2+ 2—20, 2 — 10z + 24, 2* —x — 30.
12, P4+ 2—42, 22 —112+ 30, &+ 22— 35.
13. 2+ 32+1, 22245242, 2+ 32+ 2.
14. 522+ 112+2, 522 +162+3, 22+ 52 + 6.
15. *—Tay+4+129% > — 62y + 8y, * —5xy+ 64>
16. 22°+32—2, 2274152 — 8, 2’410z + 16.
17. 822 —38xy+35y% 48 —ay—59, 228 —Bay — T2
160. L.C.M. by H.C.F. The L.C.M. of two expres-
sions can always be obtained by first finding their H. C. F.

Ex. 1. Find the L. C. M. of 234+ 22 — 2 and 284 222 — 8.
The H. C. F. of these expressions is found to be z — 1.
By division we find that

. Bp+2-2=C-1D(2+22+ 2),
and PB+222—-3=(@x—-1)(@2+3z+3).

Since z — 1 is the H. C.F. of the given expressions, their second
factors 22 + 2z + 2 and 22 4+ 3z + 2 have no common factor.
Hence, the required L. C. M. is

@)@ +22+2)@+32+3). Q)
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161. To find the L.C.M. of three expressions 4, B, C,
we find M, the L.C. M. of A and B; then the L.C. M. of
M and C is the L. C. M. required.

Exercise 67.

Find the H.C. F. and L. C. M. of :

1.

® ® e e p @

[y
b

11.

222 +3x—20, 62®—252*+4 21 2 4 10.
?—1524 36, 2*—32*— 2+ 6.

. 9P —2—2 328~ 100° —To—4.

P?+aP—4z—4, 224622+ 1124 6.
B—2—Tz+15, *+22—3z+9.
PPtz +3 2+ -3 -2+ 2.
-2+ 82x—8, P+ 42— 8x4 24,
6+ —52—2 6224+52—-3x—2.
42— 102+ 42+ 2, 3¢ — 22— 324 2.
2—922426x—24, 2 — 1222+ 472 — 60.
2 —ax*— o’z + @*, 2*+ ax®— o’z — a’.

Find the L.C. M. of :

12.

P62t 4112—6, 2*— 92?4 267 — 24,
@822+ 192 —12.

13. #—524+92—9, *—2*— 92 +9,

-4 +122—9.

162. The L. C. M. of two integral expressions i3 the product
of either expression into the quotient of the other divided by
the H.C. F. of the two expressions.

Proof. Let A and B denote any two integral expressions,
H their H.C.F., and L their L.C. M.
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Then L by definition contains all the factors of 4, and in
addition all the factors of B which are not in A; that is,
the factors of B + H.

Hence L=Ax (B+ H). (6))
163. From (1) in § 162 we obtain .
AxB=Lx H. @)

That is, the product of two integral expressions is equal to
the product of their L. C. M. and their H.C. F.



CHAPTER XII
FRACTIONS

164. A fraction being an indicated quotient, the fraction
a/b denotes that number which multiplied by the divisor
b is equal to the dividend a. Reread § 90.

Eg.,—-8/4=-2, for —2x4=-8.

166. Algebraic fractions. The fractions in arithmetic in-
volve only arithmetic numbers, and are called arithmetic
fractions.

In Chapter III. we used arithmetic fractions to denote
the arithmetic values of positive and negative numbers, the
quality being indicated by the sign + or —.

An algebraic fraction is one whose numerator and denomi-
nator are quality-numbers. The sign before an algebraic
fraction denotes the quality of its numeral coefficient.

Thus, —%;— denotes the product of — 1 and the fraction
(—9)/(+3).

166. By the law of quality in division it follows that —

Changing the quality of both the numerator and denominator
does not change the quality of the fraction.

Changing the quality of either the numerator or denominator
changes the quality of the fraction.

_7=Z, and :_GE_G_.
-b

E.g., -:-8- 8 b

But -Ta and -"—‘; are opposite in quality.
163
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Then by definition containg all the factors of 4, ang
addition all the factors of B which are Dot in 4; thyt
the factors of B + H.

Hence LEAX(B+H).

163. From (1) in § 162 we obtain

AstLxH.

That is, the product of to integras

€Ipressions s equ.
the product of their L. C. M. and theijr

H.C.F.
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an expression con-

e
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“ractions to frac-
actions :
a'+al
Cz—a
20 —To—1
' z—3
-3z,
r—2
32+ 2241
x4+ 4
—17Taz*—4x+1
52 +9x—2

12,

changed by multiplying
sume number.

1.
g a form of 1

§91

s_(@-PE+y _ 2?9
y @+w@E+y) @+y)?
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167. By § 166 and the law of quality in § 48 it: follows
that —

Changing the sign before a fraction and changing the
quality of either its mumerator or denominator does not
change the quality of the term.

—8_8 «a —a a
E.g. ——2=2, C=_—¢ -2 .
g o 95 b5 O —b
abe _(—a)(—=b)(—¢), —abc_  —abe
Again, xyz = xyz ' Tmyz T (—2)yz

168. A fractional literal expression is an expression which
has one or more fractional literal terms.

+band az + by + i

are fractional expressions.
r—y a+b

E.g.,

An integral literal expression, as we have seen, denotes
any integral or fractional number; likewise a fractional
literal expression denotes any integral or fractional number.

E.g., adenotes 2, 5, 3/2, — 2/3, or any other number.
Again, when ¢ = 6 and b =2, a/b=3;

when ¢ =12 and b =3, a/b=4;

when a= 38 and b =25, a/b=23/5; and so on.

169. A proper literal fraction is a fraction whose numer-
ator is of a lower degree than its denominator in a dommon
letter of arrangement.

An improper literal fraction is a fraction whose numerator
is of the same or of a higher degree than its denominator in
a common letter of arrangement.

1 and— 2+ 1
z+2 22+ 3x—4
. 2 22 +1

While —Z
e 2 +4+1 22+ 3x—4

The value of a proper literal fraction may be either less or greater

than 1.

Eg., are proper literal fractions.

are improper literal fractions.
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REDUCTION OF FRACTIONS.

170. To reduce an expression is to find an identical expres
sion of some required form.

171. To reduce an improper fraction to an expression con-
taining no improper fractions,

Perform the indicated operation of division.

Sometimes the quotient can be obtained by inspection.

For examples, see §§ 129 and 133.
Exercise 68.

Reduce each of the following improper fractions to frac-
tional expressions containing no improper fractions:

1 522 — 202 —15 5 4 a* 9 2* +at
Sz "2+a ‘z—a
9. Z+T, 6. ZH2 g9 ZZ-Ta-1
z+2 r—a r—3
3. e . 7. ﬁ—__a’. 11. ‘”2—3“’.
z+3 z+a r—2
4 52417 8. 416 12. 3224+ 22x41
z—3 x4+ 2 r+4
13 4a’+6ab + 90 14 60 —172* — 4 +4+1
) 2a—3b ) 5?4+ 9w —2

172. The value of a fraction 18 not changed by multiplying
s numerator and denominator by the same number.

That is, -a/b=am/(bm).
Proof. %E%X%, m/m being a form of 1
= am/(bm). § 91
Eg, 8=3%5_15 z—y_(E-NE+y_a2—3
"4Tax5 20 2ty @+n@E+Y @+He)?
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173. The walue of a fraction is not changed by dividing its
numerator and denominator by the same number.

That is, a/b=(a+m)/(b+ m).

Proof. atm_(a+mm_a § 172
b+m (B+m)ym b

E.g. ct+ex_(ct+ex)+c_l+42z
! c+ey (c+cey)+c 1+y

174. A fraction is said to be in its lowest terms when its
numerator and denominator have no common factor.

176. To reduce a fraction to its lowest terms,
Divide its numerator and denominator by all their common
JSactors, or by their H. C. F. (§ 173).
dashp
Ex. 1. Reduce 8 aizyt to its lowest terms.

The H. C. F. of the numerator and denominator is 4 axy?; and

4ardP_4ar®y? +daxy?_ 22 § 173
8 a%ryt” 8aZryt +4axy® 2ay?

Ex. 2. Reduce &
a? —

az; to its lowest terms.
x

Factoring numerator and denominator, we obtain

a2—ax_ _ a(a—2) _ a 173
a?—22" (a+z)(a—2) a+z §
zt—1 — #—1
Ex 3. e ats A@-D_z@=D
1 1

Exercise 69.
Reduce to its lowest terms each of the following fractions:

1. =%, g, _—2a%¢
—— ; 4 a'b%



10.

11.

12.

13.

14.

16.

16.

_ e
— %

e a

* 16207

—15a%%'ds®
— 25 a®b'c*»®
125 ab’dd*
150 a*t**d
_Batryt
— 5 ab'zy*z

5 a®bicry®
— Tb'czy®

FRACTIONS

17.

18.

19.

167

20. ——

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

15a’—5az.
?—9a®

a’—2aa:+a:’.
2 —a?
at+ 2a'® 4 b*
1-b5a+6a"
1—7a+12a?

-9z 420
4+ 6x— 55
1-94*+204
146y —-554
?4aFf—2
?4+5a4+6

e+ 22+1
2> 432"+ 2

@—P)(@—zy+9°)
(@+y) (@ +ay+y°)

o — am’+b’x—ab’.
o — ax? — b% + ab®
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176, When the factors of the numerator and denominator
of a fraction cannot be found by inspection, their H. C.F.
can be found by the method given in Chapter XI.

323 — 13224 232 — 21
1623 — 3822 — 22 + 21

The H. C. F. is found to be 83z — 7; and by division we find
828 — 1322423z —21=(22—22+3)(8z—-1)
1628 - 3822 — 22+ 21=(622—2—8)(Bxz—1T7).

. 828 — 18221232 —21_2?—22438
" 1623 — 8822 —22+21 b6a2—2—38

Ex. 1. Reduce to its lowest terms.

Exercise 70.

Reduce to the simplest form the following fractions:

1 ad—3a+2 . 6 22 +ar’ 4+ 4a%c—Ta®
"2 —3a'+1 P —Ta’+ 8% —2ad
5 @ +3a"—20 7. 22+32+ 423

T at—at—12 ’ 6 +a22—1

3 42° 4 3ax® + a® 8 -+ 1

Tt ard + a’z + at 28— 2241

4 42 —-102* 440+ 2 9 42+ 1122425

C 8t -2 —32+2 ‘45 —922 4302 —25

5 6+ —b5x—2 10 ot — 2022 —15x+ 4 .
"6+ bt—3x—2 " a4+ 928 +1922—92—20

177. Two or more fractions which have the same denomi-
nator are said to have a common denominator.

The lowest common denominator (L. C.D.) of two or more
fractions is the L. C. M. of their denominators.

Eg., the L.C.D. of the fractions —%— and ﬁ is
(a — b)%(a + b), or the L.C. M. of the denominators a2 — 3% and

(a - b)2.
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* 178. To reduce two or more fractions to identical fractions
having the L. C. D.,

Multiply both the numerator and the denominator of each
fraction by the quotient obtained by dividing their L. C.D. by
the denominator of that fraction.

Proof. The derived fractions have the L. C. D.; and by
§ 172, each is identical with its corresponding given fraction.

x__ Y ___ and d
a?b(z + a) abi(x—a) ab(x? — a?)
tical fractions having the L. C. D.

The L. C. M. of the denominators is a?b2(2? — a?).

Dividing this L.C. D. by the denominator of each fraction, and
multiplying both the numerator and denominator by the quotient,
we obtain

Ex. 1. Reduce to iden-

z —xxblx—a)_ br(x—a)
a®b(x + a)  a*b2(x* — a?) a’bi(x? — a?)’

] _yxa(x+a)_ _ay(z+a)
ab’(x — @) a(z? —a?)  a?b(x? — a?)’
and z —_zxab _ abz
ab(x? — a?) "~ a*bi(x? — a?)” a??(x? — a?)
Ex. 2. Reduce ! 1 1 to iden-

22 —62+6 22—4z+8 2?—3x+2
tical fractions having the L. C. D.
The denominators equal

x-3)(x-2), (x-3)(x-1), (x—2)(x—-1),

respectively. Hence their L.C. M. is (z — 3)(z — 2)(x — 1).

. 1 - zx—1 .

T @=-8)(x—-2) (-8)(-2)(=z-1)’

1 - x—2 .

: (@=3)(x—1) (z=-3)(@-2)(@-1)’
1 r—3

G-@E-1) @E-3@-2@-1
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Exercise 71.
Reduce to identical fractions having the L.C.D.:

3 4 b 2 3 4

1 12 o7 2@ iy a+b a'+ b

ba®* 3bx Tey—m 5. % az? zy®

6z%’ 8y 10a2* " 1-2 (1-2)” 1-2)
a z a? m m? mn?

2—a z—a *—a' "n mn—n" mi—nd

2.

ab m—n

am —bm + an — bn’ 2a'—2ab

3 153 2
#+32+2 #*4+2:—3 2+5x+6
2a b 3a? Y
a—b 2b—2d 4(a—?b) 6(*—dd)

1 1 1
@E—a)@—b) G—2)(c—2) (z—c)(=—a)

1.

10.

ADDITION AND SUBTRACTION OF FRACTIONS.

179, The converse of the distributive law for division is

Hence to add or subtract fractions,

Reduce the fractions, if they have not a C. D., to identical
fractions having the L. C.D.; then add or subtract each nu-
merator as the sign before the fraction directs, and write the
result over the L.C. D.

b e by ez _byter, .
E.g., ;+§=xy+zy._ zy H

a b_axr bc_ax—be
and ———E— ==
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Note. The student should remember that when either the numer-
ator or the denominator is a polynomial, the horizoutal line in a frac-
tion is a sign of grouping as well as a sign of division.

Ex. 1. Combine and simplify +__

z-— !l z+y
The L. C. M. of the denominators is (z — y)(z + y); and
1 1 _ z+y z—y

z— v+z+r (z~- v)(z+v)+(z »(E+Y)

=z+ty+(z—y __2z
By By

1 1
22—62z+6 22—Tz+412

BA-6z+ 6=(z—-2)(z-3),
B-Tz+12=(2z-8)(z-4);
hence, the L. C. M. of the denominators is (z — 2)(z — 8)(z — 4), and

Ex. 2. Combine and simplify

z—4 z—2
the expression = G -9G -0 @-DE_3E_5)
=_(E-H-(2-2) _ =2

T(x-2)(z-38)(z—4) (=-2)(z-3)(x-4)

a?—bc_ac—b3 ab—c?
ca ab

Ex. 3. Combine and simplify

The L. C. M. of the denominators is abc, hence
x i —a(a®—bc) blac—b%) c(ab—c
the e on = abe abc abe
—a(a% — bc)— b(ac — b?) — c(ab — e¥)
- abe

a'+b'+c‘ 8 abe
abe

Exercise 72.
Combine and simplify :

a—58b a—3b a—3b ,3a—>b
1. 3 3 2. 2 +-——5
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6a—5b 4a—1

3 2
a—b a—->b"
b e
x xz—4 z—q

1773 t7s

2w—3_z+2

b 3,2£§1_3£il

4

7. 52=2Y_gy—22

6

8. 52=2
(/]

9.
9

10. 2=2

5248
6 T 12

b_a—5b_ a+T7b

2a

11.b+c

4a 8a
c+a _a—10

2a

12. 2=2%

+

4b 3¢
at+z_ ol—2o

x

2at—

+ a 2 ax
¥ -3 J—a

18. ===

14.

2 @

Yy

15. 2=3

2m—3y+3m—2z 5

= Tz
2?—9 8—2

bz

T T

6. 2_30=2 oy iy

xy

zy* =y

Reduce to an improper fraction :

@+
a—b0 .
a+b_a?

17. a4+ b—

+0?_a? — b —(a? +07)

1 a

2 e
a+1
w’ .
a—2

18. a—14

19. a42+

- a—-b

-7

4
a—2b
x




FRACTIONS 173

' 62*
. al— a2 — .
22. a*—2axr+4 itr%s
23. w—a+y+a’—ay+ .
z+a

2. 1tz +2+ -2
1—2

dr2841 g
25. P (z—2'—1).

26. 1422404+ 21,
2¢ -1
B _P+182—5,
27. #—2z+3 e

a ax
a—-a:+a:’—a’

Beginners should always see to it that the denominators of the
fractions to be added or subtracted are all arranged in descending
powers, or all in ascending powers, of some particular letter of
arrangement.

Arranging the denominators in this example in descending powers
of a, we have .

a e’ _ a —azx
a—z 22—a® a—-z a?—22
_a(e+z)—axr_ a?
T ad-2 a?-2?

28. Combine and simplify

. Combine and simplify:

a b 1 6
2 et tr—a 33'3+z+z2—9
@ a 142 1—=2
30, ——4 ——- 34. - .
a—a+a—w 11—z 14z
] Ca 1 2
R e e %‘x_2+@-m2
32. 1 2 36. a+2bh a—2%

1—2 1—-2 a—2b a+20b
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ety _z—y, 4
z—y z+y -9y
2a 2b a4+ ¥
a+bd a—0b a—-0
& 4 1
a—1 a(a—1)

87.

88.

39.
4a*°+b6 2a—b
403 -0 2a+bd

1,1 11
z—1 -2 42 =241

40.

41.

The character of the denominators in this example suggests that it
is simpler first to combine the first and fourth fractions, next the
second and third, and then to combine these results, as below :

1 1 _z+l1—(z—1)_ 2
z—1 z+1" 22 —1 Tat-1

1 1 _z42-(2-2)_ 4
z—2 z+2  B#-4 B4

and 2 ., 4 _2@-D+4@-1)_ 62212
B—1 B4 (@-1) (-4 —H-b6A+4

1 1 2 4
42.
T—etigs 142 134
Here it is simpler first to combine the first and second fractions,
next to combine this result and the third fraction, then this last result

and the fourth fraction, as below :

1 1 _14z4(Q-2)_ 2
1l—-2 142z 1—22 T1-—2g8

2 2 _200+420)+2(1-2)_ 4
1—23 1422 1— 2t Tl1—at’

4 .4 _4(04aM+4(0-a)_ 8
-2 14z 128 1-2
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2 1 =46
z—2 a:+2 2?44
44. a a 2a?
a—zx a4+ a4+
33—z 34z 1-—162
1—-32 143z 92*—1

1 1 __x+3
z—1 2(@+4+1) 2@=*+1)

a @ 2a? 4a*
a—a:+a+a= a’+a:’+a‘+z‘

) 1 3 3 1
8 23 w—1+w+1 2+3

1 4 1

49. z—2 z— 1+5—m+1+w+2

2 2 1
80 S 8et2 F_s_3 Z_1

The expression

43.

45.

46.

47.

— + 2 _ 1
T(@-2)(z-1) (z—-2)(x+1) (z-1L)@+1)
2@+1)+2(z-1)—(z-2)

ST E-2@-DE+])

3z +2
=E-DeE-HE+D
1 1
8 S 9s+20  F_112+30
52 11
T B _Tx4+12 £ —5z+6
1 1
8 oF—2-1 27+2_3
1 3
8 P o1 67—n_2
55. 4 3

4-7a—2d® 3—a—10a°
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5 _ 2
S542—1822 24+5zxz+4 22
5z __15@—-1)  9(x+3)
2(x+1)(x—3) 16(z—3)(x—2) 16(z+1)(z—2)
x + 15 _ 12 .
P?+5x4+6 22492+14 224102421
3 4 442

8. it sariT @41

24 _3+2m+3—2m
9—-12x4+42> 3-2z 342z

1 B 2 + 1 .
Z?+dax+6a® P*+4ar+3a? 2*+3ar+2a®

56.

57.

58.

60.

61.

2a r—a + 2
(x—2a)? &#—5axr+6a® 2—3a
1_ 4 . 6 4 1
a a+l a+2 a+3 a+4

1 _ 2 +_ 1
?—-5x+4+6 a*—4x+4+3 2*—3x+2

1 1 2
8—8x 848z 4442 242o

i 1 1 " 18
6a—18 6a+18 a*’+9 a*+ 81

1 1 1
@0 G-96-9 Cc-D6—)

62.

63.

64.

65.

66.

In examples of this kind it is best for beginners to arrange all the
factors in the denominators of the fractions so that a precedes b or ¢,
and b precedes c.

We therefore change b — a into —(a —b), ¢ — @ into —(a - ¢),
and ¢ — b into — (b —c¢). The expression then becomes

1 _ 1 + 1
(@a-0)(@-c) (@=b0)0=c) (@-0c)(d-0)
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" The L.C. M. of the denominators is (¢ — b)(a — ¢) (b —¢);

—c —(a —c)+(a—-b)_0

*. the expression_ G-DE-0k-0 =

o8- (b—_c)°<b—a>+<c—a><c—b)+<a—b><a—c>
69.

z x Yy
G-—nG-9 G-9G-2 G-2G—9)
70. y+2z z4+2 x4ty
—@@-@ @—@@—@ E—2)z-1y)

MULTIPLICATION AND DIVISION OF FRACTIONS.

180. Product of fractions. See § 91.

Ex. 1 *+t2,2+3 z4+4_(2+2(E+DN(=+4)_ =1 o1
x z+3xz+4xz+2 E+3)(@+4)=x+2) §

Ex. 2. Simplify Z=% 5 T+ 17, 22y
ity 3y? x(x+2y) z2 — y?

The factors common to numerator and denominator can be can-
celled before the multiplication is performed, as below :

e~ AT 27y
The expression = 3 xzw T21) (“/"’V) =)
— 2z,
T 8(z+2y)
181. To multiply a fraction by any number,
Multiply the numerator, or divide the denominator, by that
number.

Proof.

X m

>R

X

>R

m__am
1= § 91
/

a/(b -+ m). § 173

. b a? _baZx4 5 a2
6a? 4=
Ex 85 % 802  8pisd

182. The reciprocal of a fraction is equal to the fraction
tnverted.

That is, 1+ (a/b)y=b/a.
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Pronf. B'a muzigiied ty che dviscr « ) is equal to the
d.7.dend 1; hence 5 1 s she §icdent

183. Ve &ivide by a fractiem,

Mniziply by the yeriprienl of the fraction

Prorf. Dividing by a ncmber gives the sanie result as
matip.7ing by it3 reciproeal § 87).
1 32 _2x_ =387y 2? 4

557 'y 3b 2z 19kx

Ex. 2. S2= a’z—’-’x’+'
:ﬂ+a‘ z+a B+ D—at
— - 1
T(-ax+ @2t ax+ &%)
= 1
T4 a2t at

184. To divide a fraction by any number,

Divide the numerator, or multiply the denomirator, by that
number.

Bx.

Proof. 8 m=0x1l=12 91
0of. b+m bxm - §
= (a+m)/b. §173
Exercise 73.
S8implify each of the following expressions :~
20 _3¢ b_z_ ¢
1. 30-)(.4-; 6. ;X;-!—a-
20 _6c¢c bz a:’ a?
2. . Z.
'u,"r,a"zy 7 b’ ab¥ R
Za w’b 3a*_ 2¢ . 3a
5% e %Yy & 10 *Tax Tl
2 3abw 6y* 21¢ , 35c%,
e Py dy % 16 T T
' ]
5 Jary  Galy' 10. 2b mx9a

B T 1000 8a"y a0




11.

12.

13.

14.

15.

16.

- 26.

FRACTIONS 179

z—y T4y . 17. z—1 _2—2 2—4

x’+wyx:cy—y’ 4 z—2xw—3+z—3

24+22 22—32 Bs—a _z+2a
18.

2—-9 X 2 -4 8 :::’—-40,’>< T—a

d—y x—2y -2 (a—2)
19.

z’—4y’x z+y ’ a‘+z’+ ot —a?

a+b ><ab—b’ 20 14z’—7z+2a;—1'

a®—a®h  ab+ a? T 12254242 P+ 2z

2+32 =x2+43 162*—9a® 42—3a
1.

z+4 +a:’+4:c 2 ©£—4 * z—2

a+4b +ab+4b’_ 2 a’b’+3ab+ab+3.

at+bab  a*+5ath " 4a'—1 " 2a+41

z’—14a:—15+a:’—-12a:—45.
P#?—4zx—45 2L —62-—-27

z’-—63’+36z+ @+ 2162
2 —49 2 —x—42

z’—a:—20+ z+1 +w’+2z—8
2 — 26 P?+bz P—z—2

w’—18w+80+z'-15a:+56xa:+5
P#—52~50 2P—62—7 =x—-1

23.

24.

©?—-8x—9 xz’—25+x’+4w—5.
2172472 2*—1 2*—9z+48

*—8z xw’+2a:+1+z’+2:c+4
B—-4z—-5 2—-22—22 2—b

29 (a+d' a0 "_(a+b)Aa
T(@—-0? (@—0)F o+ b

(a—b)’—c’+c’—(a—b)’
(@—c)f—=0 V'—(c—a)

27.

'30.
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s St ooy Aoty
g ory SIS

2wy 2 -y
2. (1= )+ (525 —3a)
First reduce each of the mixed expressions to fractions. '
ab ab
33. b— .
| (“a—‘ )( )

2 4 ay ( z y )
34. == X — .
24+9y \z—y z+y

a+4+b a— a+b a0
séf.(a—b+a+b>+(a—b a+b)
36. <a+3f) (——)
z

as+bs+3ab(a+b) »2(a b’) 1 b\,
81. 2a(a—b)’ X ( a +—+a

4a:'+:v—14x 4a:’ z—2 | 2244z

% Soy~ity P4 %z 7 3P _z_1d

39 24+x—-2 x’+5z+4___(o:’+3m+_2 z 4+ 3\,

F_g—20 @#-s  \F—2s—15 " o

40. 422 —162+ 15 2?—6x—7 % 422—-1

22+ 3z+1 22— 1Tz +21 42— 20z + 25

(a+d)—-c_  a (a —b)!— .
4. a’-l-ab—acx(a+c)’;-b’xab—b’—bc .

C+2ab+¥—-c_al—2ac+E—0
X

42 ——2be BP—2bc+cF—al -

= —64 P4+122—64  2*—16x 464

B T+ 18° P64 P rdsii6
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186. A complex fraction is a fraction whose numerator and
denominator, either or both, are fractional expressions. ’

a+b
E.g., Z:—‘Z, or :T""l; (g+§), is a complex fraction.
z 'y

Observe that a hkeavy lilt;e is draw;n between the numerator and
denominator of the complex fraction.

Ex. L @ [r=0xV=3,
b =z

N A s

Sometimes the easiest way to simplify a complex fraction
is to' multiply its numerator and denominator by the L. C. M.
~of the denominators of their fractional terms.

a+z a-—=z (a+z_a—:|:
Ex. 3. a—zx a+a»:E a—2 a+2
a+z a—2z (ﬁi"? a—x

)@-2a+2
a—2 a+2 a-—z+a+z)(a_z)(a+x)
—(a+2)3—(a—12)?
T (@+2)?+(a—2x)*
=———2az )
T at4 a8

Here (a — x)(a + z) is the L.C. M. of the denominators of the
fractional terms in the numerator and denominator of the complex

fraction. . .
a a
z+— — )z8
Ex. 4. +Z=(z+2) _ttaxr_ 2
. z-a—i‘_(z—a—‘)x’— zt—at 22 —ad
z8 z3
Ex. 5. Simplity —_ .

zr+2

1
z4+2-"72
+ z

‘% —
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In a fraction of this kind, called a continued fraction, we first sim-
plify the lowest complex fraction as below :

.z _ z
LY T @ta §83
z+2_§i_l_ (z+2)z—(x+1)
” — x
= _ z+2z
22 4zrx—1
- z(@2+z-—1)
Tx(@+zxz—1)—(2?+2%)
B+zr—-1
T z3-3
Exercise 74.
Simplify each of the following fractional expressions:
E__l_ 3a+ﬁ 9+f
n m 8¢ b d
1. > 4. T 7. e
g.__. 3c+_ __.+__
m n 8a n o p
»
a+3— 5 —Z2 . e—1.
2 — 5 —= 8. —1
) ' 142
e d +:c
2432 1—3';,-" 24548
3. . 6. —s: 9
8b ¥ 6,8
3 1+ +o+a
i 2 3 at+bdb _a—b
- 22 z". 19. a—>b a+b.
g—-a: 1— o + b
x (a +0)*
1, 2226 S+
4_ ' 13 2%
2 1 1 +l
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z N 1
14. 14 . 17.
1+z2f 1__1+a:
1—2 z_l
@
15. 1 T 18. ”_2:6
a— a—l z—2— i
a+ z-2=
a—1 z —
16. —= 19. 11 - 11
T +—= g——s s+—
y+2 z+= z—=
z % )

22.

23.

24.

»

25.

2

»

y+;—3
z+y— 22—
zy t X ’
w+y—;¢§ @y
1_1—w+1+2# z+4+1
142 1-2 2z+1
4
z—2—z_2 z—4—z_4
4 1
w—2—z_5 x—4—w_4

¢+F_ﬂ @’+4®@+®
2ab /¢+M a?—ab+V®

(et rw [ wrw)
U -wro) [ Havs)

GGG OG-2)
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a+ b8 b+a‘—a’b’+b’

27.
pr b°>< —5 T a a4 b

gs. (Z4+2 424D\ (2243 344
‘\2z+3 5z+6 3z+4 4z+5
oo, (L2 _14a®\ (142" 14
) 1+ 1+ 1+ﬁ 142

o {63 ..+b+1} (22 -5}

1868. Power of a fraction. 7The nth power of a fraction is
equal to the nth power of its numerator divided by the nth
power of its denominator; and conversely.

That is, - (a/b);' =a"/b".

Proof. v (%)ﬂs% . % . gb---to n factors by notation
=ttt 4%
=a"/b" by notation

Ex. 1. ('32_::1%) =(-1y {3%’% " §§ 119, 186

=- % §§ 118, 119

Ex. 2. & (: "53212)’ [(z “:’)_(’;' H'= (;s —-42  §188

Exerolse 76.

Write each of the following powers as a quotient of
products :

2a\? 2az\* 2 a®z®\?
L. (—3—b, . 8. (_W 5. (3721_’

3 ARIC e
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_aa'b\*, _azly _Zy\™,
7. ( cy,) 10. ( bc&) 18. ( ab,)
8. (21;,—‘3’)5- 11. (—- 32 :};}z;)'- 14. (- %)"“-
_ad\ o 2asyy _sry
o (-5 (2 e (-2

Simplify each of the following expressions:

1. =1 ( >_(a+1)’

(a—1)*"
17. M. 8. @""— 19. M.
@—af @+’ @ =)
(@—1) e 4+1\ y—1
20. (a’+a+1)‘ 22. +1) X m3—+1

- ()

2ab? 2ab* m*%

Expand each of the following powers:

/1 1\s LA 1 1 1

1 1\ [ 3 a b c\?
26. (;’—F>° 29. (F_g). 32. (z+§—;>.
4

Factor each of the following expressions:

3e, 442,72 g6, T _2az_ d
y

_.___+_.
¥ ¥ by ¥

2 10z ? 2z
e LN 87. L %14
y’ y ‘ 4y oy
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5 _ 2
S542—1822 2452422

Sz __15@=-1) __ 9(z+3)
2(@+1)(x—3) 16(x—3)(x—2) 16(z+1)(x—2)

x " 15 _ 12
P?4+52+6 22492414 22410z 421

3 4 4z 42
8 it oa+i 2@ 43241

24 x _3+2m 3—-2=x
9—-12x4422 3—2zxz 3+2=z

1 _ 2 + 1 .
F+baz+6d¢ F+iaw+3a £+3aat+2d

56.

b7.

58.

60.

61.

2a x—a + 2
x—2a)} 2—bax+6d® 2—3a
1 4 6 4 1
a a4+l a+2 a+3 a+4

1 2 1

7 _b2t6 Z_4z+3 F_ 3242

1 1 + z 0=
8—8x 8482 4442 2422

i 1 1 + 18
6a—18 6a+18 a*+9 a*+ 81

1 1 1
@ D@9 t-906-a)  t-aC—b

62.

63.

64.

65.

66.

67.

In examples of this kind it is best for beginners to arrange all the
factors in the denominators of the fractions so that a precedes b or ¢,
and b precedes c.

We therefore change b —a into —(a —b), ¢ — @ into —(a —¢),
and ¢ — b into — (b —¢). The expression then becomes
1 _ 1 + 1
(a-d)(@@—c) (@-b)@®—0) (@-0)(d-0)
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" The L.C. M. of the denominators is (a—0d)(a—c)(d—c);

b—c—(a—c)+(a—0b)_ =0,

*, the expression = @=d)(a—cy(db—0)

c
“'@—9@—@*@—@@—»*@—@@—@
69.

z [ 4 Y
G—DG—2 G-2G-2 G-2E—1

y+z z42 r+y
=9 e-n G-90—9 G-9e-9

MULTIPLICATION AND DIVISION OF FRACTIONS.

180. Product of fractions. See § 91.

Ex. 1. :c+2xa:+3xa:+4 E+2)(E+)HE+H_ =1 01
z+3 z+4 z2+2 (@+8)(@+4)(x+2) §

P - 2 2zy
Ex. 2. Simplif Y ¥ Y 2
plify £ 3y“ x(x+2y) x2-—y?
The factors common to numerator and denominator can be can-
celled before the multiplication is performed, as below :

=2~ ¥2AD) 2zy
The expression = v ,e:(x +20) (“/"’ﬁ) %)
— 2z,
T3@=+29)

181. To multiply a fraction by any number,

Multiply the numerator, or divide the denominator, by that
number.

Proof. %xms%x"fs—bﬂ—‘ ' § 91
] =a/(b+m). § 173
5 a? _ba2x4 5 a?
Ex 55 4= "8 Tawmsd

182. The reciprocal of a fraction is equal to the fraction
tnverted.

That is, 1+ (a/b)=b/a.
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Proof. b/a multiplied by the divisor /b is equal to the
dividend 1; hence b/a is the quotient.

183. To divide by a fraction,
Multiply by the reciprocal of the fraction.

Proof. Dividing by a number gives the samie result as
multiplying by its reciprocal (§ 87).
Ex. 1. 3_(1__2_2_3_41 X _g 21_‘12.
6b 7y b6b 2z 100z
Ex. 2. z—a+z'—a' z—a ,z+a
x #»+a® z+a 2+ad 25—ad
— - 1
=(a|=2 — ax + a?) (2 + ax + a3)
= 1
TPt + ot

184. To divide a fraction by any number,

Divide the numerator, or multiply the denominator, by that
number.

a a_1 a
s - =E-X—=— 1
Proof. b-:-m bxm v , §9
= (a+m)/b. § 173
Exercise 73.
Simplify each of the following expressions :-
1. 2a 3c 6. ng_,_g,
3c a ¢ a
2a 6c 5z @ 7 a
2. 3 X p §— 7. ?X;’.ya
‘ 2a © b 3a*_ 2¢ . 3a
% 5% ’37 8 T *TastToa
s 290 34 o 0¥ 26 35y ,
be 7as taz Taz i
3 a%y’ 2 .z 94
10. X=—=
1002 3a y 40




11.

12.

13.

14.

15.

16.

FRACTIONS 179

z—y z+y . 17 z—1 _2—-2 2-—4
z’+a:yxa:y—y’ 7 z—2xx—3+w—3
2?4222 £—-3z ©2—a _z+2a
-9 F_4 18. F_dd z—a
d—y z—2y 19. ©—2_ (a—2)

P 1y z+y Al i s
a+bd xab—b’ 20. 14.z’—7z+2m—-1 '
at—a®’ ab+4 at 12254+ 2422 224 22
?2+32 243 1 162*—9a* 4x—3a
z+4 TZtis R
a+4b +ab+4b’. 29 a’b’+3ab+ab+3
a*+5ab a*+5a% " 4a'—1 2a+1

w’—14m—15+z'—12w—45.
#—4z—45 2P —62-—27

z’—6a:’+36z+ #4216z
2 —49 2 —x—42

m’—z—20+ z+4+1 +w’+2z—8
o~ 25 B4+ br Ps—z-2

w’—18a=+80+w’-15w+56x:c+5
$#—-52—-50 2L—62x—-7 2—1

?®*—8x—9 z’—25+z’+4w-—5.
2172472 2*—1 2*—92+8
-8 z’+2w+1+x’+2w+4

B S iz 5 P_w_22 =8

(@+0)? a*—b (a4b)
gy = < R W
@—b'—d  &—(a—b)
@—cf—8 bB—(c—a)

23.

24.

26.

27.

80.
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31.

32.

ELEMENTS OF ALGEBRA

m‘+y‘xw—y o — 2y + o
-y zt+y d+IY+y

(-z55)+ (G=F —3=)

First reduce each of the mixed expressions to fractions. '

33.
34.
385,
36.
37.
388.
39.
40.
41.
42.

43.

_(“fqa—l‘-) )= %)

m’+@g)x( z 0y ).
P?+y \z—y z+y

a+b+a— Lfat+b a—b
- \e—0 a'+b a—b a+b

(++%5) (37,— )2

@+ +3abla+Db) 4. _E) b\,
2(1;((1—b)2 - Xb( —a +1-+a

42'+o—14 47 «2=2 . 27 +4zx
6oy ~14y “2?—4" 42T 3F -z —14

Fo2-20 F-a  \P—2a-16° &

g+e—2 F+554+4 (F4+3x42 m+3).

422—162+15 ?—6z—17 4221

27 +3z+1 22— 1Ta+21 42— 207 + 25

(a+vl_>)’—c’>< . a >((a—b)?mc" ‘
atab—ac (a+c)—b adb—0—bec

a?4+2ab+®—c_a?—2ac+ -0
- —c2—=2b¢ B—2bc+c—ad -

2t — 64 xa;’+12w—64+:c’—16z+,64
e+ 24x+128° ?—-64 B +4x+16
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186, A complex fraction is a fraction whose numerator and
denominator, either or both, are fractional expressions.

a+bd
Eg., = 'Z, or :f: (g+§), is & complex fraction.
+
z ¥

Observe that a heavy l.ilie is draw;l between the numerator and
denominator of the complex fraction.

Ex. L ayr=a,
x b/y b bx
z Yy _x+y y'+z
me (j0)/(30)=5Y5
=2ty, = _2
y y+z

Sometimes the easiest way to simplify a complex fraction
is to' multiply its numerator and denominator by the L. C. M.
~of the denominators of their fractional terms.

a+z a—=z (gi-_:g_a—z
a—-z a+z_\a—z a+z
a+z a—z—(a+x

) (a —z)(a+2)
a—z+a+z)(a — z)(a 4 x)

— (@a+2)?—(a—2)

T (a+2)?+(@—2x)

= 2z

T al+ad

Here (@ — z)(a + z) i8 the L.C. M. of the denominators of the

fractional terms in the numerator and denominator of the complex

Ex. 8.

a—z+a+z

fraction. . .
a a
x4+ — padil
_ +z=(x+) TS B
) z_a_*"‘( "_‘)xa ¥—at B-a
x8 8
Ex. B. 8t z
x. 5. Simplify )

" —

1
z+2-"12
+ z
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In a fraction of this kind, called a continued fraction, we first sim-
plify the lowest complex fraction as below :

z

£ 2

T N CF Y)Y §83
z+2—$+l @+2)z—(x+1)
N . x
=, 2+2z .
L x24zx—1
= z@2+z—1)
Tz(@+z—1)—(22+2%)
B+zr—1
T 2238
Exercise 74.
Simplify each of the following fractional expressions:
m 1 7b a , c
n m St T a
1. > 4. T 7. mw
a_»o0 30+_ =4=
m n 8a n o p
’
a+§ 5. —2 . 21
2. — z—= 8. — =
-2 1+m
2+32 1-% 245+
3. . 6. —. 9, — %,
8b ¥’ 6,8
“*+3 1+5 4+ a
1 2 3 a+b _a—>
10. % LA 1. a—2> 2a+b.
?-—:c 1_9 s
z (a +0)*
n, 228 842
4 13, 2 at-
e T 1.1

a® axr o
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: , 1
14. 14 17, ——
1427 5 1—1+f
r—=
z
1 z—2
15 — 1 18. —
a+ 1 z_z—l
a—1 z—2
18 am 19. 11 - 11
x+y+§ z—$+l z+ﬁ—l
2 % x
T—y— 1 2
20 y zy X;:%‘
-y
z+y— 1 v
21. y oty—Y_ xﬁ.
Y7ty
1—2z 1422 z41
. J1—
22 { 1+z+1—@}xzx+1
z—2— 1 r—4— 4
z—2 z—
23. 1 X 1
rz—2— - ® 4—z—4
24.

at+ b 1) ab? L4ab(a+b)
2ad /¢+v a*—ab+ b

D D))
U@ [ +av)

62 (6969

25.

26.

-3
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a“-i-b’)< b+a‘—a’b’+b‘
a®— b8 b’ at + a?? + bt

28 z+2 _4a:+ 22+ 3 3x+4
"\2z2+3 bxz+6 3z+44 4z+5

29. ‘<1+m 1+x’)+(1+m’_1+

27.

1+2 1+ 142 1+
— b\? a+bd ’_ a+bd .
o {67 -2t (G a1

186. Power of a fraction. The nth power of a Sraction i3
equal to the nth power of its numerator divided by the nth
power of its denominator; and conversely.

Thatis, = . (a/b)"=a"/b".

Proof. (%) _‘; ‘; Z -to n factors by notation
splontoes gy
= a"/b" by notation

Ex. 1. (-827“::%)'5(— )'% " s 119, 188

| =— %&% §§ 118, 119

mx 2. GoTZAD o [C=DE-0 S-on 510

Bxercise 76.

Write each of the following powers as a quotient of
products :

2a\ 2ax\® 2 adx?\?
G B G BN

S IC e )
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_ b\ _aziy\' _Z\™,
(- o~ (-2
2 azy™\*, — 2yt _z\™,
& (:’ff) 1 ( 3a’bc‘) o ( ab)

LB (R (R

Simplify each of the following expressions :

18, @1 (’ )’s (@ + 1)

@=1y"

17. @ —a?)’ 18. Gl 20 19. M.
(Iz_a)l . (x_i_ )U ’_bf)s
_(@=1)* | z+1\' ¥ —1

O 22. +1) xLE—

z + 5)°

. -

(z%*‘ )(zabz'azz)

Expand each of the following powers:

< (1,1 @  a?\! 1.1 1\
26. (= e (5= (=42
<w+y) o (a” ) % (m+y+z)
1 1\ o 3 a b c\?
8. ([=—= === =4 =-=2).
2 (a’ b’) 29 (b’ zy:) 32 (a:+y z)
o1, a_z\ 30. 9.;._1’. °, 33. (‘j_f_ll '
b y b a *x a y
Factor each of the following expressions:
4z, &F 2 2az , a
34. 4———+— 36. T 22T %,
¥ ¥ by ¥
. 2P IOx 2 2z
35. —+-—+25 37. L _2%44
¥ ' 4y 9y
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642 32z
— 42244,
9y T3y T
92 25
% "2t oa

38.
39

40. —

2 24

41. ﬁ-i-—3-+4as+8.

42, 87 —day+ oy L.

7P W 9z,

43. - — - 4
64y 8y 'y

ELEMENTS OF ALGEBRA

2 _a

¥ B

4a‘a:’___9_‘t£.
b ¢

2 _g,
¢y

44.

45.

46.

47.

3
9y o Zaz_d
a b be ¢
REAL N T
25a®  ba® a* ¢

48.

49. +

Reduce to its lowest terms each of the following fractions:

] a:’—8:v_z)+7y".
F—Bay_ 28y
at — bt
T (@—)(a+D)
52. g——ﬂ—“’— a+z'

(@® +2°) (a — )

53. L—NE—W),
@ -9 -9

50

51

Brad—at—1
CP—dra—1

a®—a'b—abt+ ¥
at— a® — a®* + ab®

56. (z+y+z)’—(z—-y——z)’

54

55.

3z(y*+2yz+7)

at—16

3. S io+8a—16a+i6




CHAPTER XIII
FRACTIONAL EQUATIONS

187. A fractional equation is an equation one or both of
whose meinbers are fractional with respect to an unknown.

E.g., 2—:f—l - 3%1 = 4 is a fractional equation in z,
while g + %’ = %i— is an integral equation in z.

‘We cannot speak of the degree of a fractional equation.
The term degree as defined in § 101 applies only to an
integral equation.

188. If both members of an integral equation are multiplied
by the same unknown integral expression M, the derived equa-
tion has all the roots of the given equation, and, in addition,
those of M = 0.

E.g., if we multiply both members of the equation )

2z+1=2+8 ¢))
by z — b ; the root 5 is introduced in the derived equation.

Proof. 1f A and B denote integral expressions in the
unknown, and we multiply both members of

A=B @
by any unknown integral expression M, we obtain
AM = BM, or (A— B) M=0. @)

By § 149, (2) is equivalent to the two equations

A4A—B=0and M=0.
187
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That is, the roots of M = 0 are introduced in the derived
equation (2) by multiplying both members of (1) by M.

189. If both members of a fractional equation in one un-
known are multiplied by any integral ewpression which is
necessary fo clear the equation of fractions, the derived integral
equation will be equivalent to the given fractional equation.

Ex. 1. “Solve the equation =b-2 (¢))

z—1
Multiplying by = — 1 to clear (1) of fractions, we obtain

3:61—3‘?—5.
Transpose, 22—6x+8=0.
Faetor, (zx—2)(x—4)=0. : (©))

No root could be lost, nor could either root bf (2) be introduced by
multiplying (1) by  — 1; hence (2) is equivalent to (1).
"Therefore, the roots of (1) are 2 and 4.

3 2z -
A —=5. 1
Ex. 2. Solve z—6+x—3 (¢))

Multiplying by (z — 6) (z — 3) to clear (1) of fractions we obtain
Y 8(x—8) +2z(x—6)=6(x—5)(z—3). ‘
23 —-112428=0,
(@—4) (@ —T) =0, @

No root could be lost nor could either root of (2) be introduced by
multiplying by z — 6 or z — 8 ; hence (2) is equivalent to (1).
‘Therefore, the roots of (1) are 4and 7.

Proof. By transposing to the first member all the terms
of any fractional equation, adding them, and reducing the
resulting fraction to its lowest terms, we derive an equation
of the form

4/B=0, )

where 4 and B have no common factors.
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- By the preceding principles of equivalent equations, the
derived equation (1) is equivalent to the given fractional
equation.

‘We are to prove that (1) is equivalent to the equation

A=0. @

Any root of (1) reduces A4/B to 0. But when A4/B is
zero, A is zero; hence any root of (1) is a root of (2).
_ To prove the converse we must first prove that when

A=0, B£0.

If A and B could become 0 for the same value of z, as a;
then by § 132 they would have the factor # — @ in common.
But by hypothesis 4 and B have no common factor; hence
when A =0, B+0.

Hence any root of (2) reduces A4 to 0 but not B to 0.

Therefore any root of (2) reduces 4/B to 0 and is a root
of (1). :

Hence equations (1) and (2) are equivalent.

. Ex. 3. Solve 1--2___1 _g o))

Transposing and adding the fractions, we have

1_”2_:11+6=0.

1= (z+1)+6=00rz=86. e

By §§ 1056 and 106, equation (2) is equivalent to (1) ; hence 6 is
the one and only root of (1).

But if, as would be more natural for the beginner, we should
clear equation (1) of fractions by multiplying by z — 1, we would
obtain .

: z—1—22=—1—-6z486.

Transpose, 2 —-T24+6=0.
(@ —1) (z—6) =0, ®)
of which the roots are 1 and 6,
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As was shown above, to clear equation (1) of fractions it was not
necessary to multiply by z — 1; hence multiplying (1) by z—1 is
the same as multiplying the equivalent integral equation (2) by z — 1.

In clearing of fractions an equation in one unknown, to
avoid introducing roots, the following suggestions should
be heeded:

(i) Fractions having a common denominator should be
combined.

(ii) Factors common to the numerator and denominator
of any fraction should be cancelled.

(iii) When multiplying by a multiple of the denomi-
nators, we should always use the L. C. M.

Ex. 4. Sol z_ ,z-—9_z+1 2-8 B
x owe z—2+z—7 z—l+z-6 B .‘.()

Transpose so that each member is a difference,

z_ _z+1 _2—-8 z-—9
‘'z2—-2 z-1 z2—-6 -7

2 _ 2 .
Combine, e G- D E-DE 6’ @)

Clear of fractions, 22 — 132 + 42 =22 — 3z + 2.
102 =40, orz=4. ®

Since the root 4 could not be introduced in clearing (2) of fractions,
4 is the root of (1).

Ex. 6. Sol z—1 x+6=x+l+z+8 1
X0 B0 F1tzy7 z+87z+6 ™

' —1 z+1_2z+8 2456 '
Transpose - = - : 2
! z+1 2+38 z+456 z4+17 (?
Combine, 1 : 1 ®

@+D(x+8) @+6)@+7)
Clear of fractions, 22 + 122 +36= 23 + 4z + 3.

c8z=-82,orz=—4.
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Or reducing the improper fractions in (2) to mixed expressions, we
have,

2 2 2 2
-1 =1- -1
x+l +z+8 z+6 +z+7
1 1 _ 1 1

-z+l+z+3_ x+5+x+7i

Combining these fractions, we obtain equation (3) above.
Since the root — 4 could not be introduced in clearing (8) of
fractions, — 4 is the root of (1). :

Exercise 76.

Solve each of the following fraotional equations:

L 32—16_5, h 8 . & _.1
z 3 2243 4z+6 6x+8

2. 5:+—15=3' 12. fﬁ-ﬁ:& .

3 :-—}-i=§ 13. wtiic7—a;f-6=5'

t ey W E%ﬂ%_

> g::i=é::§ | 16- §i4+xic=zi5

8. w-tl=z?f2—2' 16. wil_zi2=z-}-3'

T ::—i+£= ’ 1. gwi4=gz12+zi6

8. %”;ﬁi—z 18. :%Z%E=g?-1+_3+4im'

. 4a:1+6+6m1+4=2m%|-3 . =t E

0. 14 2 _ 2 gy 822 3047

3z+49 bz+l 43 . 8x=5- 4z 48
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21.

22.

23.

24.

. ELEMENTS OF ALGEBRA

:_‘_"_i_:T“g_—_g. o ”114-2”"'1 5
il :+§ wil 2&5%i%_2%53=&
%i%=%§§_%'» W'#i1+m11=1iw
zi2=3::;-w:f %'ﬁi9+zi3=33é
29.3:1:+5+ 5 _8+43«x

80.

81.

32.

33.

34.

35.

36.

31.

38.

89.

3z—1"'1-94 143z
11 11

z+b x+6 =2+6 z+8
1 1 1,1

w+2+w+10—w+4+x+8

1 1 _ 1 1
w—5+w+2“x—4+w+1

z—9_z+1+m—8

(4

w—2+m—7_w—1 z—6
z4+3 2—6_2+4 -5
w+1+w—4-w+2+w 3
m—3_w—4=m—6_w 7
z—4 z2z—-b5 2—T7 xz—8
x _z+1=w—8_w—9
r—2 2z—1 2—6 x-—7T
z+b w—6=x—4_z—15
z2+4 2—7 2z—5 x—16

z—7 2—9 x—13 =2—-1b
t—9 z—11 z—16 =z—17
z+3 46 w+2 z+5
x4+6 T e+9 w+5 z+48
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x+2+w 7T 243 _x—6
z z—b :c+1 rz—4
42—17 102—13 8x—30 , bz —4

e =1 v 258 2s-7  z-1

40.

bz—8 6z—4 102—8 -8

42. z— 2+ z—17 z2—1 2—6
30+4+6x,60+8z 48 |
8.1 Tags S Mt
26 —3x  16x4+4} 23
Mt Teerz =0 taqa
) 3 30 3 5
46- 4—2w+8(1—m)_2-z+2—2z
s, _T__ 60 _ 104 _ 8
'#—4 b52—30 3z—12 z—6
a. 4 2 5 23

z+43 z+1 2w+6 2042

2z—1)(3z+8)
48. o+ d) —-1=0.

In the five following examples first reduce improper fractions to
mixed expressions.
bz—64 22—11 4255 z—6
z—13 z—6 z—14 2-—-7

2—8 x—4_x—b 2T
80 10t z—6 z—77Tz-9

z+b z4¢
z—¢ w—b

49.

51.

”.z+b=w—c+2@+g
S x=b x+4c z
me ne

ss'm+z+n+z

%m+m
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54.

z—c=z—b+ 2(b—0)
z—b z—c¢ z—b-—c¢
m+r+ n+r _m4+n42r

56. =
. 24+2n z4+2m zx+m+n

190. Problems which lead to fractional equations.
Prob. 1. The quotient of a certain number increased by 7 divided
by the same number diminished by 5 is 4. Find the number.
Let z = the required number.
Then by the conditions of the problem, we have
z+7
Whence z =9, the required number.

Prob. 2. The value of a fraction is 1/4. If its numerator is dimin-
ished by 2 and its denominator is increased by 2, the resulting fraction
will be equal to 1/9. Find the fraction.

Let 2 = the numerator of the fraction ;
then 4 z = the denominator of the fraction ;
and, by the conditions of the problem, we have

z—2 _1
tz+2 9

Whence z = 4, and the required fraction is 4/16.

Hxercise 77.

1. The value of a fraction is 1/7. If its numerator is
increased by 5 and its denominator by 15, the resulting
fraction will be equal to 1/5. Find the fraction.

2. The sum of two numbers is 20, and the quotient of
the less divided by the greater is 1 /3. Find the numbers.

8. What number added to the numerator and denominator
of the fraction 3/7 will give a fraction equal to 2/3?

4. What number must be added to the numerator and
subtracted from the denommator of the fra.ctlon 5/11 to
give its recxprocal? Lo
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5. The reciprocal of a number is equal to 7 times the
reciprocal of the sum of the number and 5. Find the number.

8. A train ran 240 miles in a certain time. If it had
run 6 miles an hour faster, it would have run 48 miles
farther in the same time. Find the rate of the train.

7. A number has three digits which increase by 2 from
right to left. The quotient of the number divided by the
sum of the digits is 48. Find the number.

8. A steamer can run 18 miles an hour in still water.
If it can run 96 miles with the current in the same time
that it can run 48 miles against the current what is the
rate of the current ? -

9. A number of men have $ 80 to divide. If $ 150 were
divided among 2 more men, each one would receive $ 5 more.
Find the number of men.

10. The circumference of the hind wheel of a wagon
exceeds the circumference of the front wheel by 2 feet. In
running 200 yards the front wheel makes 10 more revolu-
tions than the hind wheel. What is the circumference of
each wheel ?

11. A number has two digits which increase by 4 from
right to left. If the digits are interchanged and the result-
ing number is divided by the first number the quotient will
be 4/7. Find the number.

12. A train runs 10 miles farther in an hour than a man
rides on a bicycle in the same time. If it takes the man §
hours longer to ride 100 miles than it takes the train to run
the same distance, what is the rate of the train ?

13. A tank can be filled with one pipe in 30 minutes, by
a second pipe in 40 minutes, by a third in 50 minutes. How
long will it take to fill it with them all running together ?

14. A can do a piece of work in 3} days, B in 2} days,
Cin 3} days. If A, B, and C work together, how long will
it take to do the work ?
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15. A cistern can be filled in 15 minutes by two pipes, A
and B, running together; after A has been running by itself
for 5 minutes, B is also turned on, and the cistern is filled
in 13 minutes more. In what time would it be filled by
each pipe separately ?

16. A man, woman, and child could reap a field in 30
hours, the man doing half as much again as the woman, and
the woman two-thirds as much again as the child. How
many hours would they each take to do it separately ?

17. A and B ride 100 miles from P to Q. They ride
together at a uniform rate until they are within 30 miles of
@, when A increases his rate by 1/5 of his previous rate.
When B is within 20 miles of @ he increases his rate by
1/2 of his previous rate, and arrives at @ 10 minutes earlier
than A. At what rate did A and B first ride ?

18. A and B can reap a field together in 12 hours, A and
C in 16 hours, and A by himself in 20 hours. In what
time could B and C together reap it? In what time could
A, B, and C together reap it ?

19. The sum of two numbers is n, and the quotient of the
less divided by the greater is a/b. Find the numbers.

20. The reciprocal of a number is n times the reciprocal
of the sum of the number and a. Find the number.

21. A train ran a miles in a certain time. If it had run
b miles an hour faster, it would have run ¢ miles further in
the same time. Find the rate of the train.

22. A steamer can run a miles an hour in still water. If
it can run b miles with the current in the same time that it
can run ¢ miles against the current, what is the rate of the
current ?

23. The value of a fraction is 1/a. If its numerator is
increased by m and its denominator by =, the resulting
fraction will be equal to 1/6. Find the fraction.



CHAPTER XIV
SYSTEMS OF LINEAR EQUATIONS

191. Equations in two or more unknowns. In the equa.tion
y=3z+42, 1)

where # and y are both unknowns, y has one and only one
value for each value of z.

Eg., when =1,y=5; whenz=2,y=8; when =3,
y=11; when 2 =4, y =14, etc.

That is, equation (1) restricts # and y to sets of values.

In like manner, any equation in two or more unknowns
restricts its unknowns to sets of values.

192, A solution of an equation in two or more unknowns
is any set of values of the unknowns which renders the
equation an identity.

E.g., if in the equation .
y=8z+2 [¢))

we put 8 for z and 11 for y, we obtain the identity
11=3x38+2

Hence 3 and 11, as a set of values of = and y, is one solution of (1) ;
2 and 8 is another solution ; and so on.

Nore. The word solution denotes either the process of solving or
the result obtained by solving. The word is here used in the latter
sense.

A root of an equation in one unknown is often called a solution.

107
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193. The degree of an integral equation in two or more
unknowns is the degree of that term which is of the highest
degree in the unknowns.

E.g.,ax + by = 7 is a linear equation in z and y ; while ax? + by = ¢
or czy + 3z =2 is a quadratic equation in z and y.

184, Two equations are said to be equivalent when every
solution of each equation is-a solution of the other.

195.. The following principles concerning the equivalence of
equations, which have been proved for equations in one
unknown, hold true for all equations:

(1) If for any expression in an equation an identical expres-
sion 18 substituted, the derived equation will be equivalent to
the given one (§ 105).

(ii) If identical expressions are added to or subtracted from
both members of an equation, the derived equation will be
equivalent to the given one (§ 106).

(iii) If both members of an equation are multiplied or
divided by the same known expression, not denoting zero, the
derived equation will be equwalent to the gwen one
(§§ 108, 110). o

(iv) If one member of an equation is zero, and the other
member is the product of two or more integral factors, the
equations formed by putting each of these factors equal to zero
are together equivalent to the given equation (§ 149)..

E.g., the equation
z+2y-4)2z-3y+1)=0
is equivalent to the two equations
z+2y—4=0and 22—-3y+1=0.
(v) If both members of an integral equation are multiplied
by the same unknown integral expression M, the derived equa-

tion has all the solutions of the given equation, and in addition
those of M = 0 (§ 188).
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Proof. If we extend the notation and substitute a solution for
a root, the proofs of these principles for equations in one unknown
will apply to equations in any number of unknowns.

Exercise 78.

Of the following equations state which are egﬁivalent'.-to
the equation 2 « + y = 3, and give the reason:

1. (4x+2y)/2=3. 4. 6x+3y=9.
2. 3z+y==2+3. 5. Cx+y)/83=1.
8. 24+y=38—u= 6. 42+3y=6+1y.

State to what two linear equations each of the following
quadratic equations is equivalent, and give the reason:

7. (@—y)(@+2y+1)=0. 8. (y—z)x+2y(xz—y)=0.

Obtain ten solutions of each of the following equations:
9. 20+y=3. 10. 22+3y=6. 11. 2z—3y=4.
12. How many solutions has a single equation in two
unknowns ? :
18. By (iii) in § 195, show that the two equations
ar+by=c and a'z+b'y=¢
are equivalent when a'/a=0b'/b=¢'/c.

196. Independent equations.

Prob. If the sum of two numbers is 10 and their difference is 4,
what are the two numbers ?

Let 2 = the less number
and y = the greater number.
Then by the first condition we have the equation
y+z=10; @
and by the second condition wo have the equation
y—z=4. ) 2)
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In (1), when z=1, y=9; when =2, y=8; when x=38

y=1, etc.
In (2), when =1, y=56; when =2, y=6; when x=3,
y=1, ete.

Hence, 8 and 7 is a set of values of z and y which will satisfy each
of the two different conditions expressed by equations (1) and (2),
and are therefore the required numbers.

Equations, like (1) and (2), which express different condi-
tions are called independent equations.

Observe that independent equations express different rela-
tions between their unknowns, while equivalent equations
express the same relation.

Any solution as #=3, y =17, can be written briefly 3, 7,
it being understood that the value of « is written first.

197. Systems of equations. Two or more equations are
said to be simultaneous, when the unknowns are restricted
to the set or sets of values which satisfy all the equations

A group of two or more simultaneous equa.tlons is called
a system of equations.

E.g., equations (1) and (2) in § 196 are simultaneous, and form a
system of equations.

108. A solution of a system of equations is a set of values
of its unknowns which satisfies all its equations.

Eg., 3, 7 is a solution of the system of equations, (1)
and (2), in § 196.

To solve a system of equations is to find all its solutions.

199, Equivalent systems. Two systems of equations are
said to be equivalent when every solution of each system is
a solution of the other system.

E.g., the systems (a) and (b),

z+2y=56 (1 z=6-2y, ®
42— y=2, <2>}(“) sG-29)-y=2, (4)}("’



8YSTEMS OF LINEAR EQUATIONS 201

are equivalent ; for each system has the sotution 1, 2 ; and, as will be
proved later, neither system has any other solution.

Observe that (3) is obtained by solving (1) for z, and (4) by put-
ting in (2) the value of z given in (8); z therefore does not appear in
(4), and is said to have been eliminated.

200. Elimination is the process of deriving from two or
more equations a new equation involving one less unknown.
than the equations from which it is derived.

The unknown which does not appear in the derived equa-
tion is said to have been eliminated; as « in § 199.

There are in common use two methods of elimination:

1. Elimination by substitution or comparison.
I1. Elimination by addition or subtraction.

201. In this chapter we shall use three principles con-
cerning the equivalence of systems of equations. For con-
venience of reference we shall number them, (i), (ii), (iii).

(i) Equivalent equations. If any equation of a system is
replaced by an equivalent equation, the derived system will be
equivalent to the given system.

E g., since equation (3) is equivalent to (1), and (4) to (2), system
(b) is equivalent to system (a).

8z+2y=8 (1) briy=24, @)
4z-3y=5, (2)}(“) 8z —6y =10, (4)}()

The only solution of either system is 2, 1.

Ex. Solve the system 38 +42=15, @
24+3y=8 (2)}(")

From (1), z=38, .® } ®)

From (2), y=2. (O))

Since equation (3) is equivalent to (1), and (4) to (2), system (d)
is equivalent to system (@); hence, the one and only solution of system
(a) is 8, 2.
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Proof.of (i). Let (1) and (2) be a system of equations in
two unknowns,
A=B, (1) 4'=B, (3
© 0=D, (@ } @ =0 @ } @

and let (3) be equivalent to (1), and (4) to (2); we are to
prove that system (b) is equivalent to system (a).

Since (1) and (3) have the same solutions, and (2) and (4)
also have the same solutions; it follows that any solution
common to (1) and (2) will be common to (3) and (4) also;
and conversely. Hence, systems (a) and (b) are equivalent.

202. The method of elimination by substitution depends
upon the following principle of equivalence of systems:

(ii) Substitution. If one equation of a system is solved for
one of its unknowns, and the value thus obtained is substituted
Jor this unknown in the other equation (or equations) of the
system, the derived system will be equivalent to the given one.

Ex. 1. Solve the system 2 z = 10, @ }
y=12 -3z @@

From (1), z=b.

Substituting this value of z in (2), we obtain )
y=12-16=-38.

By (ii), system (b) is equivalent to system (a). »
Hence, the one and only solution of system () or (a) is 5, — 3.

Ex. 2. Solve the system 3z + by =19, (¢)) } @
a
bz—dy=". @/
From (1), z2=(19-5y)/3. ®
Substituting this value for z in (2), we have )
(6/3)(19—-b6y)—4y=1. 4)
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By (ii), system (b) is equivalent to system (a).

From (4), y=2. ®
Substituting 2 for y in (3), we obtain (¢)
z=(19 — 10) /3 =8. ©)

By (ii), system (¢) is equivalent to system () ; hence, the one and
only solution of system (¢) or its equivalent system (a) is 3, 2.

Ex. 3. Solve the system 2z — 6y =1, )
Tz+8y=24. (2)}(")
From (1), z=0By+1)/2 . )
Substituting this value of z in (2), we have )
(7/2)(by + 1)+ 8y =24. (4)]
By (ii), system (b) is equivalent to system (a).
From (4), y=1 6)
Substituting this value of y in (8), we obtain J (c)
z=(06+1)/2=38. (6)

By (ii), system (¢) is equivalent to (), and therefore to (a).
Hence, the one and only solution of system (a) is 8, 1.

The foregoing examples illustrate the following rule for
eliminating by substitution.

From one of the equations find the value of the unknown to
be eliminated, in terms of the others; then substitute this value
Jor that unknown in the other equation or equations.

Proof of (ii). Let (1) and (2) be a system in two
unknowns, and let (3) be the equation obtained by solving
A=B a : z=F, 3

Tr @@ Th w]o
c=D, @ =0, @
(1) for z, and (4) the equation obtained by substituting for =

in (2) its value F as given in (3); we are to prove that
system (b) is equivalent to system (a).
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Since = F'is equivalent to equation (1), system (c) is by
(i) equivalent to system (a),

z=F, ®)
C=D. ©) } ©

Any solution of system (c) renders z=F and C= D;
hence, any such solution must satisfy (6) after ¥ has been
substituted for z (vi, § 32); therefore, any solution of
system (c) will be a solution of system (b).

Conversely, any solution of system (b) renders z = F and
C' = D'; hence, any such solution must satisfy (4) after
has been substituted for F (vi, § 32); hence, any solution of
system (b) is a solution of (c).

Hence, system (b) is equivalent to system (c) or ().

In like manner the theorem could be proved if the systems
(a) and () contained three or more equations.

Exercise 79.

Solve each of the following systems of equations by the °
method of substitution : ’

1. 32=2T7, } 7. 8:0—y=34,}
224+3y=24. z+8y=2>53.

2. 3z+4y=58,} 8. ey-5'z=18,}
2y=14. 12¢—9y=0.

3. 3:v+4y=10,} 9. 7:c+4y=1,}
4z+y=09. 9z +4y=3.

4. w+2y=13,} 10. z—11y=1, }
3z4y=14. 111y —92=99.

5. 49:+7y=29,} 11. 327+5y=19,}
z+3y=11. S5z2—4y="T.

6. 5z+6y=17,} 12. 82—21y=35, }
6z+5y=16. 6zx+14y=—26.
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18. 3z—11y=0, } 16. }w+3y+14=0,}
192—193]:8. -}¢+5y+4=0.

14. 82—11y=0, 17. 3T +2)=10+),
252 — 17y =139. } (A1 42+y) =4 (9+Y). }

—4=3 t 44 D404}
sy }o+9)=4+2).
10

15.

O!l&i C.ol&

19. (m+1)(y+5)=(=v+5)(3/+1):}
eyt+e+y=+2)@y+2).

20. zy—(z—1)(y —1)=6(y—1),}
z—y=1

203. The following example illustrates a special form of
the method of elimination by substitution, which is called
elimination by comparison.

Ex. Solve the system 2z—-8y=1, Q)

bz +2y=126. (2)}()
Solve (1) for z, 2=y +1)/2. ® } \
Solve @) forz, z=(126 - 2y) /5. “@ ®)

Substituting in (4) the value of z given in (3), or, what amounts to
the same thing, putting these two values of z equal to each other, we
~ obtain
§l_t_l = 12_6__—_2, or y=18.

Substituting in (8),  z = 40/2 = 20.

By principles (i) and (ii), systems (e) and (c) are equivalent; or,
in other words, no solution has been either lost or introduced in pass-
ing from system (@) to system (c) ; hence, the one and only solution
of system (a) is 20, 18.
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Exercise 80.
Solve each of the following systems by the method of
comparison :
22 y= z Y-
1 224 y=16, 6. 5+2_5,]
s4+¥=14, s—y=4
4 T. 3z—Jpy=3,
2 w—y=5, 4z_y=20.
z_Y_
i"5=2% 8. 2+¥=0, ]
3. g+g=1o, } 3z—Ty=37.
z4+1 3y—5
toty=>5 > o =7
4 m=3y, } m+1=w_2!
jet+y=34 10 8
bz _ 2+3_8—y
5. % y=3, 0. ====75
_5y_ 3x+y)_z+3
=% =8 8 5

204. The method of elimination by addition or subtraction
depends upon the following principle:

(iii) Addition. If an equation obtained by adding, or sub-
tracting, the corresponding members of two or more equations
of a system is put in the place of any one of these equations,
the derived system will be equivalent to the given system.

Ex. 1. Solve the system 38z 4 7y =27, 1) } @)

bz +2y=16. @)

To eliminate z, we obtain from (1) and (2) equivalent equations in
which the coefficients of x are equal.

Multiply (1) by 5, 15z + 86y = 135, 3) @)
Multiply (2) by 8, 1624+ 6y= 48, 4) :
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Subtract (4) from (38), 29y = 817, (6) ©
From (4), 156z + 6y =48. (6)}
From (5), y=38, @
Substitute in (6), Zz=2. }

Proof of equivalency. By (i), systems (a) and (b) are equivalent ;
by (iii), system (c) is eqmvalent. to (b) and by (ii) and (i), system
(@) is equivalent to (c).

Hence the one and only solution of (a) is 2, 8.

Ex. 2. Solve the system 7z 42y =47, @ @
bz—4y=1. (@)

To eliminate y we obtain from (1) and (2) equivalent equations in
which the coefficients of y are arithmetically equal.

Multiply (1) by 2, 14z +4y=94. () ®
From (2), brx—4y= 1. (4)}
Add (8) and (4), 19z =95, orz=5. () ©
Substitute in (4), y =6. }

Proof of equivalency. By (i), system (b) is equivalent to (a) ; by
(iii), system (4) and (b) is equivalent to (b) ; and by (ii) and (i),
system (c) is equivalent to system, (4) and (5).

Ex. 3. Solve the system

@-Dy-D-(-2)@y-D=-2 (1)}(a)
@+2)@+2)-(=-)Yy-2)=32 @)
We first reduce (1) and (2) to the form ax + by =c.
From (1), z—-y=2, ® } ®
From (2), z+y=8. (C))]
Add (3) and (4), 22=10,orz=>5. (6)
Subtract (3) from (4), 2y=6, ory=3. (6)

By (i), system (b) is equnivalent to (a); by (i) and (iii), either (5)
and (4) or (8) and (4) formn a system equivalent to (b) ; hence the
solution of (a) is given in (6) and (6).
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Ex. 4. Solve the system

—b_42-8
8z — 7 = _'_‘2 Y (l)
Sy+4 2z-56 @
'l_s -E—=y @
We first reduce (1) and (2) to the form az + by =e¢.
From (1), 4z—-2y=-38l1, ) ®
From (2), 10z 46y =317, 4)
Multiply (8) by 8, 422-6y=-—93. (6)
Add (4) and (5), 622 =— 66, orz =~ 14/18. ©
Substitute in (8), y = 207/26.

Since (3) and (5) are equivalent and (8) is the simpler equation,
to find y we substitute in (8) rather than in (5).

By (i), (ii), and (iii), no solution has been lost or introduced in
passing from system (@) to system (c).

Proof of (iii). Let (1) and (2) be a system in two
unknowns,

4=B, (1) A=B, ®)
C=D, (9)}() A+ C=B+D, (4)}(")

and let (4) be obtained by adding the corresponding mem-
bers of (1) and (2); we are to prove that system (b) is equiv-
alent to system (a).

Any solution of (a) renders (1) and (2) identities. But,
if (1) and (2) are identities; by § 32, (3) and (4) are iden-
tities; hence any solution of eystem (@) is a solution of
system (b).

Conversely, any solution of (b) renders (3) and (4) iden-
tities. But, if (3) and (4) are identities; by § 32, (1) and (2)
are identities; hence any solution of system (b) is a solution
of (a).

Hence (a) and (b) are equivalent systems.

In like mann~r the theorem counld be proved if the sys-
tems (a) and (b) contained three or more equations.
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The foregoing examples illustrate the following rule for
elimination by addition or subtraction:

Reduce the equations to the form ax + by =c.

Find the L.C. M. of the coefficients of the unknown to be
eliminated. Multiply both members of each equation by the
quotient of this L. C. M. divided by the coe_ﬂiczents of that un-
known in the equation.

Add or subtract the corresponding members of the equations
thus derived, according as the coefficients of the unknown to be
eliminated are opposite or like in quality.

Exercise 81.

Solve each of the following systems by the method of
addition or subtraction:

1. 3m+4y=10,} . 9. 14:0—3y=39,}
dot+y=9. 6417y =35.

2. ac+2y=13,} 10. 282 — 23y =33, }
3z+4y=14." - 63x—25y=101.

3. 20—y=09, } 11. 35a:+17y=86,}
3—Ty=19. 56x—13y=17.

4. 4a:+7y=29,} 12. bx—Ty=0, }
z+3y=1L Te+by=T4

5. 224+y=10, } 18. 159:+77y=92,}
Tx+8y=0>53. 56— 33y =22

6. 5a:+6y=17,} 14. be=Ty—21, }
6x+5y=16. 212—9y=175.

7. 8w—y=34,} 15. 6y—-5a>=iS,}
w+8y=53. 12m—9y=0.

8. 15a:+7y=_29,} 16. 21z — 50y =60, }
92415y =39. 28 . — 27 y = 199.
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206. The following example illustrates a special form
of the method of elimination by addition, which is called
elimination by undetermined multipliers.

Ex. Solve the system 82z —b6y=2, _ 1))
bz—2y=16. (2)}(“)
Multiplying (1) by an arbitrary multiplier %, we obtain
Skr—bky=2k ®
Adding (3) and (2), we obtain
Bk+6)z— (bk+2)y=2k+16. 4)
Putting the coefficient of z in (4) equal'to 0, we obtain ¥ =— 5/3.
Substituting — 5/3 for k in (4), we obtain y = 2. (6)
Putting the coefficient of y in (4) equal to 0, we obtain k =— 2/6.
Substituting — 2/5 for & in (4), we obtain z = 4. ©)

The two equations, y =2 and z =4, which result from the two
different values of k in (4) form a system which by (i) and (iii) is
equivalent to (a).

No one method of elimination is preferable for all cases.
The learner should aim to select that method which is best
suited to the system to be solved.

BExercise 82.

Solve each of the following systems by that method which
is best suited to it :

1. 57w+25y=3772,} R T y_q

25z + 57 y = 1148. 2°8 7

x 2y_3

3. 93z+15y=123,} i3>

152 493 y = 201.

e+9y 5. §+5y_—-4,

3. 15z+19y=18,} y

19 24 15 y = 50. gHoz=4
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z+2

+ay=2, 13 3”—7”:0’}
3 ;x+.§y=7.
11 241
%——T=1 14. }z—4y=0, }

. "”_‘;__-'!.pl%_:Z, 15. aa;+by=(a+b)’,}
2z—5y+z+7=1 } w—by=a—b.
R ) e aw+by=a’+b’,}
m_2_ +2=0 ba;+ay=2ab.
3 L4 ’ 17. az+by=a’—b’,}
20-5_11-2y_, bz + ay =a’— b’

[ 7 718, z4+y=a+b, }
. _9)_:_2_L-i-_5=0’ ar —by=>0'—a’
23 . 123 ) 19. bz —aty =0, }
o— -
3 ....1_63l=0.J br+ay=a+bd.
20. z—y=a—b
x

. §—%:4, a,a;_by=2a’-—2b’.]
2.9 _g 21. a:c—by=a’+b’,}
7715 z+y=2a.

. 22+y=0, } 22. br—ay=")
}y—3z=8. aw—by=a"-}

. }z+%y=1#,} 23. ax+by=1,}
z+}y=43 bz +ay=1.

24. (a+b)z— (a—b)y=23ab,
(a+d)y— (a—b)x=abd. }

z

. a’w+b’y=c’,} ‘a b ab

o’z 4+ by =2 z ]
o
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8z, 2y_ z, Y
o1, “2420=3, 30. ~+¥=1,
9z 6y z 2
%Y _g3 Z LYy _<
a b 3a+6b 3
28. gz—rb=p(a—y) 31 §+%=2,
ﬂ+r=p(1+ﬂ>. z_y
@b
z Yy _
2. L tw=1 s2. ¥y,
r_¥Y_1 z a
W m 3taTh

208. Two conditions are said to be consistent or inconsistent
according as they can or cannot be satisfied at the same
time. '

Equations which express consistent conditions and there-
fore have one or more solutions in common are called con-
sistent equations. Thus the equations in any of the above
systems are consistent equations.

‘Equations which express inconsistent conditions and there-
fore have no solution in common are called inconsistent
equations. '

E.g., the equations z+y=4, ¢))
8z +3y=15, (@)

express inconsistent conditions and have no solution in common. For
if z+yis 4, 8(x + y) is 12 and cannot therefore be 15.

207. Each of the foregoing systems of linear equations
illustrates the following theorem :

If the two equations of a system in two unknowns are linear,
independent, and consistent, the system has one, and only one,
solution.
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Proof. By the principles of equivalent equations and (i)
in § 201, any systerh of two linear equations can be reduced
to an equivalent system of the form ‘

ax + by =c, 1
a'z -:- b’: = c:. 22; } (@)
Multiply (1) by b', ab'z + bb'y = b'c. ®3)
Multiply (2) by b, a'bx + bb'y = be'. 0))
Subtract (4) from (3), (ad' —a'd)z="V'c—bc'. (5)
From (1), ax+by=ec . @ } ®

By (i) and (iii), system (b) is equivalent to system (a).

When ab' — a'b =0 and d'c — bc' =0, (5) is an identity,
and system (b) or (@) has all the solutions of equatlon @);
hence equations (1) and (2) are equivalent.

When ab' — a'db =0 and d'c — bc' + 0, no value of = will
satisfy (5); hence system (b) or (a) has no solution, and
equations (1) and (2) are inconsistent.

Hence (1) and (2) are not independent and consistent
unless

ab' — a'd + 0.

When ad’' — a'b 0, = has one, and only one, value in
(5), and this value of z will give one, and only one, value
for y in (1); hence system (b) or (a) has one, and only one,
solution.

When ab’ — a'b + 0, from (5) we obtain

2= (blc — bc') / (ab' — a'b). 6)
Similarly, y= (ad' — a'c) / (ab' — a'b). )
208, Systems of three linear equations.
Ex. 1. Solve 6z4+2y—652=13, (¢))
Sx+8y—22=13, @ } (@

Te+by—8z=26. (€]
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To eliminate y, we can proceed as follows :

Multiply (1) by 8, 18z4+6y—1562=389.

Multiply‘(z) by 2, 6z+6y— 42=26.

Subtract, 12z -112=18. ()
Multiply (1) by 5, 30z + 10y — 252 = 66.

Multiply (8) by 2, 14z+10y— 62z=52 ®
Subtract, 162z -192=18. (6)
Solving syst?m (®), i.e., (4) and (6), we obtain
=1, O]
z=2 ) } ©
From (6), (7), and (1), y=3. ®

The systems (b) and (c) are equivalent.

But (b) with (1) forms a system equivalent to (a); hence (¢) with
(1), or (¢) with (8), forms a system equivalent to (a).

Hence the solution of system (a) is 2, 3, 1.

Ex. 2. Solve 8z+2y+42=19, 1)
22+ 6y +32=21, (@) t (@

S8z—y+2=4 ®))J

From (8), y=38xz+z—-4. “@

Substituting in (1) and (2) the value of y in (4), we obtain
324+282+2z—-4)+42=19,

and 224+ 56(B2x+2—-4)+382=21;
or, 9z 4+ 62=27, l(b)
and 172+ 82=41. J
Solving system (b), we obtain
z2=3, (6) ©
z=1 6)
From (4), (5), (8), y=2. ©)

By (ii), system (b) with (4) forms a system equivalent to (a);
hence (c) with (4), or (¢) with (7), forms a system equivalent to (a).
Hence the solution of () is 1, 2, 3.
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The foregoing examples illustrate the following method
of solving a system of three linear equations:

From any two of the three equations derive an equation,
eliminating an unknown; newt from the third equation and
one of the other two derive a second equation eliminating the
same unkncwn.

Solve for these two unknowns the two equations thus derived,
and substitute the values of these two unknowns in the simplest
equation which contains the third unknown.

209. From a system of four linear equations we can elimi- -
nate one of the four unknowns, and thus obtain a new system
with three unknowns. Solving this new system, we can
substitute the values thus obtained in the simplest equation
which contains the fourth unknown.

Exercise 88.

Solve :

1. 24+ 3y+4z=14, 5. be+3y+T72=2,
ze+2y+2=1T, } 20 —4y+4+92=T,
20+ y+22=2. 3z+2y+462=3.

2. z4+2y+22=11,) 6 z+2y—32=6,
2¢4+y+2=1, } 204+4y—T2=9,
344y +2=14. 3z—y—5z=3_8.

3. 3z —2y+42=2, 7. 2—2y+32=2,
2z+3y—z=5,] 2¢—3y+2=1,
z4+y+2=6. 3z—y+22=09.

4. z+y+2z=1, 8. 3z+2y—2z=20,
2¢4+3y+2=4, 2243y +62="10,

4z+9y+2=16. vs—y+62=41
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3ev+4y+5z=26, 24+20=22+435,
3z+by+62=31. 2245=110 —(y + 2).
10. 3w—4y=6z—16,] 16. ax 4 by =41,

9. 2x+3y+4z=20,] 15. z+ 20 =}y + 10, }

4w—y=z+5, by+cz=4’
2=3y+2(z—1). z+ax=A4.
1. ez +by=1, 17. cy + bz =6be,
by + @ =1, a2 + cz = 6 ca,
oz +az=1 be + ay = 6 ab.
12. cy + bz =be, 18. z—ay+a%2=a’
az 4 cx = ca, x-—by+b’z=b“,}
ba + ay = ab. z—cy + % =0c
18. z—¥=¢, 19. x4+y+z—u=11,
5 z4+y—2z4+u=17,
—%2_38
Yy—7=5% z—y+z4+u= 9,
. - z2+u=12.
2 20. z+4y+2=6,

}@+2—-5)=22—11, z+z24+u=38,

14. {(x+z—-b5)=y—=2, } z+y+u="T,
2e—11=9—(x+22). y+z4+u=9.

SYSTEMS OF FRACTIONAL EQUATIONS.

210. In clearing of fractions the equations of a system,
no solution will be lost, but new solutions may be introduced
even when we clear of fractions in the simplest manner.

Ex. 1. Solve the system 4z — 2y =2, ()]
bz+1_11 @) (@)
8y—-1 8

Clearing (2) of fractions and transposing, we have
40z —33y=—19. 3
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The solution of system, (1) and (38), is 2, 8.

In clearing (2) of fractions we multiplied by the unknown factor
8y — 1; hence any solution which was introduced will be a solution
of the equation3y —1=0, or 83y 4+ 02 —1=0.

Since 2, 8 is not a solution of this equation, it was not introduced
in clearing (2) of fractions. .

Hence 2, 8 is the one and only solution of system (a).

Ex. 2. Solve the system bz —y=2, 1)
: 1 1 (9
——=0.
z—1t y-3 '(2)
Clear (2) of fractions, z+y=4 (6))

The solution-of system, (1) and (3), is 1, 8.

To clear (2) of fractions we multiplied by the unknown factor
(x—1)(y—38),-and 1, 8 is a solution of the equation (z—1)(y—3)=0.

Hence the solution 1, 3 may have been introduced by clearing (2)
of fractions.

By trial we find that 1, 3 is not a solution of (2) ; hence the solu-
tion 1, 3 was introduced, and system (@) has no solution ; that is, its
equations are inconsistent.

211, A system of fractional equations which are linear in
the reciprocals of their unknowns is readily solved without
clearing of fractions, by treating these reciprocals as the
unknowns.

Ex. 1. Solve the system afr+c/y=m, )
b/x+dfy=n. @) } @

Multiply (1) by b, ab(1/x) + ¢b(1/y) = bm. )
Multiply (2) by a, ab(1/z) + ad(1/y) = an. @)
Subtract (4) from (8), (bc —ad)(1/y)= dbm — an.

ny= H. ®)
Multiply (1) by 4, ad(1/z)+ cd(1/y) = dm. 6
Multiply (2) by ¢, be(1/z) + cd(1/y) = cn. V)

Subtract (7) from (6), (ad — bc)(1/x)= dm — cn.

. g ad—Dbc .
h z_dm-on ®
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CHAPTER XV
PROBL_EHS SOLVED BY SYSTEMS

212. A determinate problem is one which has a finite num-
ber of solutions. Every determinate problem must contain
as many independent consistent conditions, expressed or
implied, as unknown numbers. If in any such problem we.
denote each unknown by a letter, and express each condition
by an equation, we shall obtain as many independent con-
sistent equations as there are unknowns.

The solutions of the system of equations thus obtained
will give the solutions of the problem.

Prob. 1. Find two numbers such that twice the greater exceeds three
times the less by 6, and that twice the less exceeds the greater by 2.

Let z = the greater number, and y = the less.

Then, by the first condition, we have

22—-8y=86, 1)
and by the second condition we have (a)
2y —z=2. @)

From system (a), "= 18, the greater number;
and y = 10, the less number.

Prob. 2. A number expressed by two digits is equal to six times the
sum of its digits, and the digit in the tens’ place is greater by one than
the digit in the units’ place. Find the number.

Let 2 = the digit in tens’ place, ' .

and y = the digit in units’ place.
220
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Then, from the first condition, we have

10z +y=6(x+7), O]
and from the second condition we have (a)
z—y=1 @

From system (@), z = b, the digit in tens’ place ;
and . y = 4, the digit in units’ place.
That is, the required number is 54.

Prob. 3. If the numerator of a fraction is increased by 2 and the
denominator by 1, it becomes equal to 5/8, and if the numerator and
denominator are each diminished by 1, it becomes equal to 1/2. Find
the fraction.

Let z = the numerator, and y = the denominator ; then,

from the first condition, ;’ i f = g, e
4 (@)
and from the second, ; = i = % @)

The solution of system () is 8, 15; hence the fraction is 8/15.

Prob. 4. A man and a boy can do in 15 days a piece of work which
would be done in 2 days by 7 men and 9 boys. How long would it
take one boy or one man to do it.

Let 2 = the number of days it would take one man to do the whole
work, and y = the number of days it would take one boy.

Let the whole work be represented by 1.

Then in one day a man would do 1/ of the work, and a boy 1/y
of it.

Hence, by the first condition, we have

15/2 +16/y =1, '¢))
and by the second condition we have (a)
14/2+18/y=1. @

The solution of system (a) is 20, 60.
Hence one man would do the work in 20 days, and one boy in 60
days.
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Exercise 85.

1. Six horses and 7 cows can be bought for $ 1250, and
13 cows and 11 horses can be bought for $2305. Find the
value of each animal.

2. Four times B’s age exceeds A’s age by 20 years, and
4 of A’s age is less than B’s age by 2 years. Find their
ages.

3. Find a fraction such that if 1 be added to its denomi-
nator it reduces to 4, and if 2 be added to its numerator it
reduces to §.

4. A man being asked his age, replied: “If you take
2 years from my present age the result will be double my
wife’s age, and 3 years ago her age was } of what mine will
be in 12 years.” TFind their ages.

5. One-eleventh of A’s age is greater by 2 years than
of B’s, and twice B’s age is equal to what A’s age was 13
years ago. Find their ages.

6. In 8 hours A walks 12 miles more than B does in
7 hours; and in 13 hours B walks 7 miles more than A does
in 9 hours. How many miles does each walk per hour ?

7. At an election the majority was 162, which was 3 of
the whole number of voters. What was the number of the
votes on each side ?

8. A and B have $ 250 between them ; but if A were to
lose half his money, and B % of his, they would then have
only $100. How much has each ?

9. A man bought 8 cows and 50 sheep for $1125. He
sold the cows at a profit of 209, and the sheep at a profit
of 109, and received in all $1287.50. What was the cost

.of each cow and of each sheep ?

10. Twenty-eight tons of geods are to be carried in carts
and wagons, and it is found that this will require 15 carts
and 12 wagons, or else 24 carts and 8 wagons. How much
can each cart and each wagon carry ?
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11. A and B can perform a certain task in 30 days, work-
ing together. After 12 days, however, B was called off, and
A finished it by himself 24 days after. How long would
each take to do the work alone ? ‘

12. Find the fraction such that if you quadruple the
numerator and add 3 to the denominator the fraction will
be doubled, but if you add 2 to the numerator and quadruple
the denominator, the fraction will be halved.

13. The first edition of a book had 600 pages, and was
divided into two parts. In the second edition } of the -
second part was omitted and 30 pages were added to the
first part. The change made the two parts of the same
length. . How many pages were in each part in the ﬁrst
edition ?

14. A marketman bought eggs, some at 3 for 5 cents, and
some at 4 for 5 cents, and paid for all $5.60; he afterwards
sold them at 24 cents a dozen, clearing $1.80. How many
eggs did he buy at each price ?

15. In a bag containing black and white balls, half the
number of white is equal to a third of the number of black ;
and twice the whole number of balls exceeds 3 times the
number of black balls by 4 How many balls does the bag
contain ?.

16. A crew that can row 10 miles an hour down a river,
finds that it takes twice as long to row up the river as to
row down. Find the rate of the current.

17. A certain number between 10 and 100 is 8 times the
sum of its digits, and if 45 be subtracted from it the digits
will be reversed. Find the number.

18. If A were to receive $ 50 from B, he would then have
twice as much as B would have left; but if B were to receive
$50 from A, B would have 3 times as much as A would
have left. - How much has each ?
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19. A farmer sold 30 bushels of wheat and 50 bushels of
barley for $93.75. He also sold at the same prices 50
bushels of wheat and 30 bushels of barley for $ 96.25.
What was the price of the wheat per bushel ?

20. One rectangle is of the same area as another which
is 6 yards longer and 4 yards narrower; it is also of the
same area as a third, which is 8 yards longer and 5 yards
narrower. What is the area of each ?

21. A boy rows 8 miles with the current in 1 hour 4 min-
utes, and returns against the current in 2? hours. At what
rate would he row in still water ? ‘What is the rate of the
current ?

22. A, B, C, D have $ 1450 among them; A has twice
as much as C, and B has 3 times as much as D; also C and
D together have $ 250 less than A. Find how much each
has.

23. A, B, C, D have $ 1350 among them; A has 3 times
as much as C, and B 5 times as much as D; also A and B
together have $ 250 less than 8 times what C has. Find
how much each has.

24. A number consists of 2 digits followed by zero. If
the digits be interchanged, the number will be diminished
by 180; if the left-hand digit be halved, and the other digit
be interchanged with zero, the number will be diminished
by 454. Find the number.

25. A train travelled a certain distance at a umform rate;
had the speed been 6 miles an hour more, the journey would
have occupied 4 hours less; and had the speed been 6 miles
an hour less, the journey would have occupied 6 hours more.
Find the distance.

Let z = the number of miles the train runs per hour,
and y = the number of hours the journey takes.

Then azy=(z+06)(y—4),
and W=(3—0)(II+6)-}
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26. A traveller walks a certain distance; had he gone }
mile an hour faster, he would have walked it in 4 of the
time; had he gone } mile an hour slower, he would have
been 2} hours longer on the road. Find the distance.

27. A man walks 35 miles, partly at the rate of 4 miles
an hour, and partly at 5; if he had walked at 5 miles an
hour when he walked at 4, and wvice versa, he would have
covered 2 miles more in the same time. Find the time he
was walking.

28. A fishing-rod consists of two parts; the length, of the
upper part is § that of the lower part; and 9 tiines the upper
part together with 13 times the lower part exceeds 11 times
the whole rod by 36 inches. Find the lengths of the two parts.

29. A man put $12,000 at interest in three sums, the
first at 5 per cent, the second at 4 per cent, and the third
at 3 per cent, receiving for the whole $ 490 a year.- The
swmn at 5 per cent is half as much as the other two sums.
Find each of the three sums.

30. A, B, and C can together do a piece of work in 30
days; A and. B can together do it in 32 days; B and C can
together do it in 120 days. Find the time in which each
alone could do the work. '

31. A certain company in a hotel found, when they
came to pay their bills, that if there had been 3 more per-
sons to pay the same bill, they would have paid $1 each
less than they did; and if there had been 2 fewer persons,
they would have paid $1 each more than they did. Find
the number of persons, and the number of dollars each paid.

32. A railway train, after travelling 1 hour, is detained
30 minutes, after which it proceeds at § of its former rate,
and arrives 20 minutes late. If the detention had occurred
10 miles farther on, the train would have arrived 5 minutes
later than it did. Find the first rate of the train, and the
distance travelled.
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Let 2 = the number of miles the train at first ran per hour;
and y = the number of miles in the whole distance travelled.
Then y — 2 =the number of miles to be travelled after the de-
tention,
¥ =2 _ the number of hours required to travel y — z miles
z at the rate before the detention,
and 4@6—;3’)- =the number of hours required to travel y — z miles
at the rate after the detention.
Hence ’ y—z_4(y—2) = 10 ¢))
. z bz 60
Similarly, ¥=2=10_4(y—z-10)_ 5, 2
arly, = be 3 @)
10. 40 _ b6
Subtract (2) from (1 o=
(2) from (1), Tt

Sr=24, y=44.

Hence the first rate was 24 miles an hour, and the distance travelled
was 44 miles.

33. A railway train, after travelling 1 hour, meets with
an accident which delays it 1 hour, after which it proceeds
at § of its former rate, and arrives at the terminus 3 hours
behind time; had the accident occurred 50 miles farther on,
the train would have arrived 1 hour 20 minutes sooner.
Find the length of the line, and the original rate of the
train. Ans. 100 miles, 25 miles per hour.

34. A jockey has 2 horses and 2 saddles. The saddles
are worth $15 and $10 respectively. The value of the
better horse and better saddle is 4 that of the other horse
and saddle; and the value of the better saddle and poorer
horse is }3 that of the other horse and saddle. Find the
worth of each horse.

86. Five thousand dollars is divided among A, B, C,
and D. B gets half as much as A; the excess of C’s share
over D’s share is equal to 4 of A’s share, and if B’s share



PROBLEMS 227

were increased by $ 500 he would have as much as C and D
have between them. Find how much each gets.

86. A party was composed of a certain number of men
and women, and, when 4 of the women were gone, it was
observed that there were left just half as many men again
as women; they came back, however, with their husbands,
and now there were only a third as many men again as
women. What was the original number of each ?

37. Two vessels contain mixtures of wine and water; in
one there is 3 times as much wine as water, in the other
5 times as much water as wine. Find how much must be
drawn off from each to fill a third vessel which holds 7 gal-
lons, in order that its contents may be half wine and half
water.

388. There is a number of 3 digits, the last of which is
double the first; when the number is divided by the sum of
the digits, the quotient is 22; and when by the product of
the last two, 11. Find the number.

39. Some smugglers found a cave which would exactly
hold the cargo of their boat; viz. 13 bales of silk and 33
casks of rum. While unloading, a revenue cutter came
in sight, and they were obliged to sail away, having landed
only 9 casks and 5 bales, and filled } of the cave. How
many bales separately, or how many casks, would it contain ?

40. There are 2 alloys of silver and copper, of which one
contains twice as much copper as silver, and the other 3
times as much silver as copper. How much must be taken
from each to weigh a kilogram, of which the silver and the
copper shall be equal in weight ?

41. A person rows a distance of 20 miles, and back again,
in 10 hours, the stream flowing uniformly in the same
direction all the time; and he finds that he can row 2 miles
against the stream in the same time that he rows 3 miles
with it. Find the time of his going and returning.
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42. A and B can do a piece of work in m days, A and C
can do the same piece in = days, and B and C can do it in
p days. Find in how many days each can do the work.

43. For $26.25 we can buy either 32 pounds of tea and
15 pounds of coffee, or 36 pounds of tea and 9 pounds of
coffee. Find the price of a pound of each.

44. A pound of tea and 3 pounds of sugar cost $1.50;
‘but if sugar were to rise 50 per cent, and tea 10 per cent,
they would cost $1.75. Find the price of tea and sugar.

45. A person possesses a certain capital which is invested
at a certain rate per cent. A second person has $5000
more capital than the first person, and invests it at 1 per cent
more; thus his income exceeds that of the first person by
$400. A third person has $7500 more capital than the
first, and invests it at 2 per cent more; thus his income
exceeds that of the first person by $750. Find the capital
of each person and the rate at which it is invested.

46. Two plugs are opened in the bottom of a cistern con-
taining 192 gallons of water; after 3 hours one of the plugs
becomes stopped, and the cistern is emptied by the other in
11 more hours; had 6 hours occurred before the stoppage,
it would have required only 6 hours more to empty the
cistern. How many gallons will each plug-hole discharge
in an hour, supposing the discharge uniform ?

47. A certain number of persons were divided into 3
classes, such that the majority of the first and second classes
together over the third was 10 less than 4 times the majority
of the second and third together over the first; but if the
first class had 30 more, and the second and third together
29 less, the first would have outnumbered the last 2 classes
by 1. Find the number in each class when the whole num-
ber was 34 more than 8 times the majority of the third class
over the second.
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48. Two persons, A and B, could finish a work in m
days; they worked together » days, when A was called off,
and B finished it in p days. In what time could each do it?

49. The fore-wheel of a carriage makes 6 revolutions
more than the hind-wheel in going 120 yards; if the circum-
ference of the fore-wheel be increased by } of its present
size, and the circumference of the hind-wheel by } of its
present size, the 6 will be changed to 4. Required the cir-
cumference of each wheel.



CHAPTER XVI
EVOLUTION. IRRATIONAL NUMBERS

213, An nth root of a given number is a number whose
nth power is equal to the given number.

E.g., one second root of 4 is 2, since 22 = 4.
Another second root of 4 is — 2, since (—2)2=4.
A third root of — 8 is — 2, since (—2)3=—8.

A second root of a number is usually called a square root;
and a third root a cube root.

214. The radical sign, 4/, written before a number, denotes
that some root of that number is required.

The radicand is the number whose root is required.

The index is the number which, written before and a little
above the radical sign, indicates what root is required.
‘When no index is written, 2 is understood.

E.g., 3/16 or /16 denotes a second, or square, root of 16;
16 is the radicand, and 2 is the index.

The expression J/u denotes an nth root of u; w is the
radicand, and n the index.

216. Since by definition (J/u)*=w, it follows that {/u
is one of the n equal factors of u.

216. A rational, or commensurable, number is any whole or
fractional number.

A rational expression is one which can be written without
using an indicated root. All the expressions in the previous

chapters are rational expressions.
230
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217, A perfect nth power is a number or expression whose
nth root is a rational number or expression.

E.g., since \/E =5, 25 i8 a perfect square.

Since v/— 8 %8 = —2 2y?, — 8 %2 is a perfect cube.

Prior to § 238 each radicand will be a perfect power of a
degree equal to the index of the root.

218, Two roots are said to be like or unlike according as
their indices are equal or unequal.

An even root is one whose index is even; as, /%

An o0dd root is one whose indez is odd; as, 3/27.

219, Number of roots.
(i) An arithmetic number has one, and only one, nth root.

Any odd power of a positive or negative base has the
same quality as the base itself; hence,

(ii) A positive or a negative number has one odd root of the
same quality as the number itself.

E.g., one value of \/+ 27 is + 3, since (+ 3)% =+ 27.

Again, one value of vV— 32 is — 2, since (— 2)5 = — 82.

If two numbers, opposite in quality, are arithmetically
equal, their like even powers are the same positive number;
hence, .

(iii) A4 positive number has two even roots, which are arith-
metically equal, and opposite in quality.

E.g., two values of V481 are + 9 and — 9, since (4 9)2 or (— 9)2
is + 81.

Again, two values of v+ 81 are +8 and — 8, since (+3)* or
(—38)tis + 81.

Any even power of a positive or a negative number is
positive; hence an even root of a negative number cannot be
a positive or a negative number.

Even roots of megative numbers give rise to new quality-
numbers, which will be considered in Chapter X VIII.
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220. The principal root of a positive number is its positive
root.

The principal odd root of a negative number is its negative
root. E.g., + 4 is the principal square root of 16, and — 3
is the principal cube root of — 27.

Unless the contrary is stated, the radical sign will hereafter
be understood as denoting only the principal root.

221. The like principal roots of equa.l numbers are equal ;
hence,
The like principal roots of identical e:q)resswns are identical
_ expressions.

222. Evolution is the operation of finding any required
root of a number or expression.

In the statement of the following principles of roots, by
“the root” is meant * the principal root.”

223. The exponent of any base in the root i equal to the
exponent of that base in the radicand divided by the index of
the root; and conversely.

That is, vam" = am. (€))
Proof. By § 118, (a™)"=a™.

Hence, by § 221, a™ =3{/a™, and conversely (1).
E.g., v =att=aq?; J2b=2d

224, The nth root of a product s equal to the product of the
nth roots of its factors; and conversely.

That is, Vab=%/a- Yb. )
Proof. By § 119, (J/a - /b)* =(J/a)*(/d)*=ab.

Hence, by § 221, ¥/a- {/b=<ab, and conversely (1).
Exl VY—Rad=V_32.Ya0=—2a. '
Ex. 2. V= aB®=vV_1.Ya* b8 =— a2
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Observe that, from this principle, it follows that the nth
root of any real number is the nth root of its quality-unit
into the nth root of its arithmetic value. Thus,

V¥ =VF1-Y21=+3; V—32=v—1.Y32=-2.

296, The nth root of the quotient of two numbers is equal to
the quotient of their nth roots; and conversely.

That is, Va/b=-3/a/Yb. (6]
of. Bys186, [(Y%)=(&/ar_o
Proos. Bysass, (V) ={Yi=

" Hence, by § 221,  ¥/a/¥/b =Va/b, and conversely (1).

oy 312620 V— 12628
Ex. 1. ‘\I 16 g1 = Via §226
=(-62%)/(6a"). §224
8[ 82 2510 _ ~/— 32 zoy10
Ex 2. - 280 asblzz §§ 167, 225
=—2zy2/ (ab?2?). §224
Exercise 86.
Reduce to a rational form the following expressions:
1. V4a®' 8. Va — 64 28 14. 400:'8:20,
81 oy
2. Voo 9. /343 a'%". J125a%°
3. VZ5a 10. VBT 2162y -
27 afy®
NGTY. 16. \’/—_—.
4. 100 «® 11. 4 16 (vas. 64 a®h?
]
6. V27 a®b® 32 y"
o 12. V32 17. d_ aw?;ls'
3
. V—8a%p _
’ ooy 18. %0 18, /128
7. V= &Py " N6 ) a®®
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’2 5 116
19. 5—6. 21. ‘V5+2—5‘ . 23.

,!ﬁ_ll. T
20. \[{ -5 2. \5—5; 24.

226. The sth root of the rth power of a number ts equal to
the rth power of its sth root; and conversely.

c:%l
]
5]~

_NS
I

'Y

o

That is, var= (va). @
Proof. Let ~va = B; @)
then, a = B § 12?
o= (B =B~ §§ 128,118

Hence, by 221, ~a'= B". ®)
From (2), (x/a) = B. )

From (3) and (4), by § 32, we obtain (1).

Ex. 1. V/(64/125) = (V64/125)?
= (4/5)? = 16/25.

Ex. 8. V(81 z2¢')3= (V81 2¥ct)3
= (9 27c?)8 = 720 2978,

227. The sth root of the qth root of a number 13 equal to
the gsth root of the number; that is,

~/Va=%/a.
Proof. If a number is resolved into ¢ equal factors, and

then each one of these ¢ equal factors is resolved into s
equal factors, the number will be resolved into gs equal

factors ; that is, Yva= Y.
Ex. 1. ¥,/(2828)12) = &/(20 2%912) =2 2. §227
Ex. 2. {//(26% x 98) = /(6% x 3%) =5 x 3 = 15.
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Bxercise 87.

Reduce each of the following expresswns to a rational
form:

AN 5 JPU™

2. /(27 x 647). R

8. /¥/(akbPcx). 9. Y//(729 a%™).

4. V(16/49). 10. V(27/63)".

5. V(216a™/27). 11, Y/~/(49 x 167).

6. V@I 12. VAP,
3027 2. 13, (= giiyne),
" \.064 a* 14. VB 2Py

228. Square root by inspection. When a perfect square
can be factored by inspection, its square root is found by
inspection (§§ 137, 138).

Ex. 1. 86 at + bt — 12 a2?=(6 a? — b2)?, or (b2— 6 a?)2.

»*.v/(36 a* + bt — 12 a%?) =6 a? — b3, or b2 — 6 a2

Ex. 2. Find the square root of the first eight expressions in each
of the exercises 52 and 63.

229, To show how to find the square root of any perfect
square, we must show how to reverse the process of squaring
"any expression.
E.g., squaring expression (1) we obtain expression (2). .
28 + ra? + sx (1)
28+ 2 728 + (12 + 2 8)2t + 2 rsxd 4 s%x? @
Hence, if (2) is taken as a radicand, (1) is its square root.
Now, the square root of the first term of the radicand (2) is the
Jirst term of the root (1).
If we subtract from (2) the square of the first term of (1), the first

term of the remainder is 2 rz5. Dividing 2 rx® by twice the first term
of the root, 2 23, we obtain 23, the second term of the root.
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If we subtract from the radicand the square of the sum of the first
two terms of the root, (z®+ r22%)3, the first term of the remainder
is 2 sxt. Dividing 2 szt by twice the first term of the root, we obtain
8x, the third term of the root.

This example illustrates the following principles (i) and (ii).

If the terms of a perfect square and its square root are
arranged in descending (or ascending) powers of some letter,

(1) The square root of the first term of the radicand is the
Jirst term of the square root.

(ii) If the square of the first term in the root, or the square
of the sum of its first two or more terms is subtracted from the
radicand, and the first term of the remainder is divided by
twice the first term of the root, the quotient will be the next
term of the root. )

Proof. Let A stand for any number of terms of the
square root of any perfect square, and B for the rest; the
terms of A and B being arranged in descending (or ascend-
ing) powers of the same letter, and every term of 4 being
of a higher (or lower) degree than any term of B.

By § 120, we have the identity

A’4+2A4AB+ B*= (4 + B)™ @)

Let A denote only the first term of the root; then, since
VA* =4, we have (i).

Let A denote the first one or more terms of the root;
“then, if we subtract 4? from the radicand, the remainder is
2AB+ B*. Let a denote the first term of 4, and b the first
term of B; then, supposing the remainder 2 4B + B? to be
arranged in descending (or ascending) powers of the letter
of arrangement, 2ab will be its first term. Hence, as
2 ab + 2 a = b, we have (ii).

E.g., by (i), the first term of the square root of
16 2t — 24 ya® 4+ 2622 — 12982 + 493 (3)

is V1824, or 4x2; and by (ii) the second term is — 24 yx® + 2(4 x?),
or —38yx.
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The radicand (3) less (422 — 8yx)? is 16 y3x2 — 12 y%z + 492

Hence, by (ii), the nex¢ term of the root is 16 y2? + 2(4 22), or 8y2.
* The radicand (3) less (422 — 8 yx + 2 y?)2 is zero.

Hence, the square root of (3) is 422 — 3yz + 2 y2

Instead of finding each square independently, some labor
can be saved by using the relation

A4 (2 A+ b)b=(4+ b, %)

and thus making use of the previous square. Thus the
work in the examplé above is usually written as below:

1624 — 24 y2® + 259223 — 12982 + 4} (423 — Syz + 2 2.

16 zt
822 — 3yx) — 24 yx®
—24yx® + Qy%?

823—6yz +29y2 ) 16y%?
. 16 y%22 — 12 y32 + 494

Subtracting from the radicand the square of the first term of the
root, (4 22)3, the first term of the remainder is — 24 yz*.

By (ii), the second term of the root is — 24 yz3 + 2(4 z%), or — 8 y=.

Write 2(4 22) — 3yx to the left of the first remainder, multiply it
by — 3 yz, and subtract the product from the first remainder.

Then, by (2), we have subtracted in all

(422)% 4+ (2422 —8yx)(— 8yz), or (422 — 8yx)3

By (ii), the next term of the root is 16 y2x? + 2(4 #2), or 213,

Write 2(422 —8yx)+2y? to the left of the second remainder,
multiply it by 2 y3, and subtract the product from the second remain-
der. Then, by (2), we have subtracted in all

(422 —8yx)2+ (822 —6yz +29%)2 3, or (422 —Syz +2 972

As there is no remainder, the required root is 4 22 — 3yx + 2 32
Observe that we could just as well write radicand (8) in ascending
powers of z, or what is the same thing, begin with its last term.

16 24 — 24 ya® + 26 Y22 — 12 3% + 4y ®)

Thus, by (i), the last term of the square root of (3) is V4 y2, or 232;
and, by (ii), the term before the last is — 12 yz + 2 (2 y2), or — 3 yz,
which agrees with the result above.
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Ex. Find the square root of 4zt — 823+ 42 4 1. (2)

The first term of the root is 2 #3, and the second term is —8 z%-+4 z3,
or —2z.

The last term is 1 or — 1. If the last term is — 1, the term bpfore
the last is 42 +(—2), or — 2z, which is the second term as found
above,

But (222 — 2z — 1)2=the given expression ;
hence 2 22 — 2z — 1 is the required root.

If we took — 222 as the first term of the root, the second term
would be 2 z, and the last term 1.

Nore. In the following exercise the pupil should write out the
root at once by (i) and (ii), as in the example above ; but he should
be drilled also in arranging the work of finding and subtracting the
successive squares as on page 237.

Exercise 88.
Find the square root of the following expressions:
P28 43224224 1.
422 -8 +4z2+1.
92t — 362>+ 72z + 36.
4t +4a*—Fx+ P
o+ 2%y + Bty + 22yt + o
8. #*— 22843 — 2+ 75
16 —96 z + 216 2* — 216 =* + 81 2.
8. 14+42x+1024+122% 492
9. 4'—4P+ 38—+ 1.
10. 1—ay— 5oty + 2% + 4ot
11. 2*—42°+4+62'—82°+ 92— 42+ 4.
12. 928 —122° 4+ 222+ 2* + 1224 4.
13. o8 —22a* 4 342° + 121 2® — 374 = 4 289.
14. d*—ax+ 32+ 8a—4x416.

L N

3
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15, 2?4228 42 —42°—-122* — 822+ 42°+ 16 2 4 16.
16. (1+24°)'—4x(l—2)(1+22).

17. #4228y +2)+2 (¥ + 2+ 492) + 22y2 (y + 2) + ¥
18. *— 2w+ §+ 2pa*— 622
19. —3a*+3f4a'—ba+¢fa
20. }#'+40'+}art+a'—22° — faz.
16y’ 8z  o* 32y
21. 244 e v -{-y2 z
In the polynomial
3 1,1,1
Brattztl 545 )

each term after the first is obtained by dividing the preceding term
by z; hence we regard all the terms in expression (1) as arranged
according to the powers of z.
Arranging the given expression according to the powers of z, we
have
B 8z, o0 32y 162
¥y r 2

al_ 2
z a?
9a® 6a , 6101 4z 4_:1:_’

B 52T % Batoa

‘ 64 128
96 4 2= 4 229,
24, 4204+ 3222+ 96 +—+
230. Cube root by inspection. When a perfect cube can be

factored by inspection, its cube root is found by inspection.

4
22. %+§+ ax—2 +

Ex. 1. 27 a® — 54 a®) + 36 a*b? — 8 a®h® = (3 a® — 2 ad)3. § 146
s /(27 a® — 64 a® + 36 ath? — 8 a®b®) = 8 a? — 2 ab.
Ex. 2. Find the cube root of the first nine expressions in exer-
cise 60.

231, Cube root of any perfect cube. Let A stand for any
number of terms in the cube root of any perfect cube and
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B for the rest; the terms of A and B being arranged in
descending (or ascending) powers of the same letter, and
every term in A being of a higher (or a lower) degree than
any term in B.

By § 124 we have the identity

A +3A4'B+3AB'+ B*= (4 + B @

(i) Let A denote the first term of the root; then from (1)
it follows that the cube root of the first term of the radicand
t8 the first term of the root.

(ii) Let A denote the first one or more terms of the root;
then if we subtract 4% from the radicand the remainder is
3A°B+3A4B*+ B Let a denote the first term of A,
and b the first term of B; then supposing the remainder
3 A’B 4 3 AB? + B® to be arranged in descending (or ascend-
ing) powers of the letter of arrangement, 3a% will be its
first term. But 3a’ + 3a®=b; hence,

If the cube of the first term of the root, or the cube of the
sum of its first two or more terms, is subtracted from the
radicand, and the first term of the remainder is divided by
three times the square of the first term of the root, the quotient
will be the next term of the root.

E.g., by (i), the first term of the cube root of
826 — 3025+ 662t —6323 43322 -02+1
is V828, or 8x2; and by (ii) the second term is — 36 2% + 3 (2 2?)3,

or —38ux.

The radicand less (222 — 82)21s 1224 — 8623 + 8322 -9z + 1.
Hence, by (ii), the next term of the root is 12 z* + 3(2 2%)3, or 1.
The radicand less (2 22 — 8 z 4 1)3 is zero.

Hence the cube root is 223 — 83z 4 1.

Instead of finding each cube independently, some labor
can be saved by using the relation

A+ (3 4+ 34 + )b = (4 +b),
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and thus making use of the previous cubes. Thus the work
in the example above is usually written as below:
| 223—-82+1
828—36 25466 24 —63 28+ 33 23—9 241

a’: 84:‘
Sa?=12 2 =
Sab+b?=  —182%4 922 | —86254+542—2728
3 A3=12 24— 86 23+ 27 22 12 24—36 28
3 Ab+b2= 622—9z+1 |122¢—8623—8322—0z+1

By (i), the first term of the root is V8, i.e., a =222

Subtract (2z%)3; then, by (ii), the second term of the root is
— 3625 + 83(2%%)?, f.e, b=—3=.

Hence 8a?+3ab+02=1224 — 1828 4 923,

Multiply this sum by — 3z, and subtract the product from the first
remainder. Then in all we have subtracted a® + (3 a2 + 3 ab + b2)b,
or (a + b)3; that is, we have subtracted (222 — 8)3, since @ = 2 22
and b=-—38z.

Let A = the terms of the root already found = 2 22 — 8z,
and b = the next term of the root =12 2% + 8(22%)2=1;
then SA24+3Ab +b02=122¢—3623+3822 — 92 + 1.

Multiply this sum by 1, and subtract the product from the second
remainder. Then in all we have subtracted

(A +Db)3 or (222 -3z +1)3

As there is no remainder, the required root is 222 — 3z + 1.

We could just as well write the radicand in ascending powers of z,
or, what is the same thing, begin with the last term.

8% — 8625 + 6624 —632% +3322—92 4+ 1. (¢))

Thus, by (i), the last term of the cube root of (1) is ¥/1, or 1; and,
by (ii), the term before the last is — 9% + 8 - 12, or — 3z, which agrees
with the result above.

Ex. Find the cube root of

27 + 108z + 80 22 — 80 2® — 60 z* + 4825 — 848, (¢))

The first term is 3, and the second is 108z + 3 - 83, or 4 2.

The last term is — 222, and the term before the last is

4825 + 3(— 222)?, or 4z.
Since 8+ 4z —22?)3=the given expression ;
8 + 4 z — 2 z2 = the required root.
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Exercise 89.
Find the cube root of the following expressions:
1. 1432462+ 725+ 62*4+32° +2°
- Y -3y +6y—TyY+6y—-3y+1
1-6z+210'—442°+ 632 —542° 4 2T
. 8a°—36a’+66a*—63a+33a*—9a+ 1.
. 828+ 1222 302 —352° +452* + 27T 2 — 27.
2021 — 182+ 172+ 62 -3z — 1.
24 7'y’ + 96 2y — 6 2°y + 2 — 96 zy® + 64 y — 56 2N

8. 2728 — 54 2%a + 117 2*a® — 116 2%a® + 117 2%* — 54 za®
+27a%
9. 21643422 +1T12* + 272" — 272" — 1092® — 108 .

N e TR WD

2T_21,
10. a:’—9a:+-; =
1. %—63‘+12z‘y’—8y‘.

? 62 9z , 9y 6y
LT 2T T 4 YOV Y,
12 st et P R

¥ ¥y
18, 2£;—§+2w—7+%_2_}+2;?.
15. %f‘—g%’—g%’+%+%’—27+%ﬂ

232. Higher roots. The fourth, fifth, or any other root of
a perfect power can be obtained by a method based on one
of the following identities:

A +4 4B+ 6 A’B+4AB+ B'=(4+ B4 (1)
A4-5 A'B+10 A*B*+10 A*B*+5 AB*+ B*=(4+B)*. (2)
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If the terms of a perfect fourth power are arranged in
descending (or ascending) powers of some letter, from (1)
it follows that the first term of the root is the fourth root
of the first term of the radicand; that the second term of
the root is the second term of the radicand divided by four
times the cube of the first term of the root; and that the
last term of the root is the fourth root of the last term
of the radicand. Similarly for any other higher root.

E.g., the first term of the fourth root of
81zt 4 108z% 4+ 5422 + 122 1 Q)

is VB81z*, or 3z ; the second term is 108::'-1-4(3:)3 or 1, which we
knowtobethelastlerm of the root.

Since (3z + 1)t =the radicand (1); 3z 4 1 is the fourth root
of (1).

Again the first term of the fifth root of

3225 — 80zt + 802 — 4022 + 102 —1 @)

is V3225, or 2z; the second term is — 80z* + 5(2z)4, or — 1, which
we know to be the last term of the root.
Since (2z — 1)5= the radicand (2); 2z — 1 is the fifth root of (2).

The fourth root can also be obtained by finding the square
root of the square root; and the sixth root, by finding the
cube root of the square root. Similarly for any other root
whose index is not a prime number.

Exercise 90.
By inspection find the fourth root of the expressions:
1. 16 a* — 96 a’x 4 216 a’s* — 216 ax® + 81 24
2. #* — 82%a L 24 2%a® — 32 za® + 16 a*.
8. 1+4a+4a’+10a%+ a*+ 10a*+ 16 a*+ 16 a*+4 19 a*.
By inspection find the fifth root of the expressions:
4. 80 a%® — 80 ax* + 322° — 40 a’x — a® 4+ 10 a‘x.
6. 90 a’® — 15 ax' + &* — 270 a’* + 405 a'z — 243 &’
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By inspection find the sixth root of the expressions:

6. 19224 64 + 2402 + 2* 4+ 12 2° + 60 ot 4 160 2~

7. 1215a* — 1458 a®* — 540 a® + 135a? — 18 a + 1 4 729 @
8. 60 a%* —160 a’r3+64 a®+af—12 ax®+ 240 a'a*—192 a®z.

ROOTS OF DECIMAL NUMBERS.

233. Square roots. -/1=1, and /100 =10; hence the
square root of any number between 1 and 100 lies between
1 and 10; that is, if a number contains one or two integral
figures, its square root contains one integral figure.

Again, /100 =10, and /10000 =100; hence the square
root of any number between 100 and 10000 lies between 10
and 100; that is, if a number contains three or four integral
figures, its square root contains two figures; and so on.

Hence, in finding the square root of a decimal number,
the first step is to divide its integral figures into groups of
two figures each, beginning at units’ place.

We thus determine the number of integral figures in the
root, and indicate the part of the number from which each
figure of the root is to be obtained.

The group to the left may contain only one figure.

E.g., in the square root of 53824 there are hundreds, tens, and

units ; and the hundreds’ figure is the square root of the greatest per-
_ fect square in 5 ; that is, the hundreds’ figure is 2.

234, From § 233, we have the following principle :

(i) The first figure in the square root of a decimal number
is the square root of the greatest perfect square in the first, or

" left-hand, group of figures.

Let A stand for the number denoted by one or more of
the first figures of the root, and B stand for the number
denoted by the rest; then the root is 4 4 B.

Hence the radicand = 4*+(2.4+ B)B. @
Subtract 4? and then divide by 2 4 + B,
(radicand — 4)+ (24 + B)=B. 2
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Let b stand for the number denoted by the first figure in
B, i.e., the figure whose order of units is the next lower to
the lowest in 4; then from (2)

(radicand — A4%)+2 .4 >b. ®3)

From inequality (3), we have the following principle:

(ii) If the square of the first part of the root is subtracted
from the radicand, and the remainder is divided by twice this
part of the root, the quotient will be greater than the next figure
of the root.

E.g., by (i), the first, or hundreds, figure in the square root of

54766

is 2 ; since 4 is the greatest perfect square in 5.
The radicand less (200)2 is 14756.
Hence, by (ii), the tens figure of the root cannot exceed

14766 + 2(200), or 3 tens.

The radicand less (230)3 is 1856 ; hence the root is greater than 230,
and 38 is the tens figure of the root.
By (u), the units figure of the root cannot exceed

© 1866 + 2(230), or 4
The radicand less (234)3is zero.
Hence the square root of 54766 is 284

Instead of finding each square mdependently, mueh labor
can be saved by using the relation (§ 229).... -
A? +(2A+b)b (A + )%,

and thus making use of the previous square.
The work in the example -above is usually written as
below : o

547 56(234
A _-.-;(.200)2 = 40000
244 b=2(200)+ 30 = 430)14766
(2A + b)b =430 x 30 = 12000

"2A+b=2(230)+ 4= 464)1856 -
(2A+b)b=4684 x 4= 18 56
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At first A =200. Subtracting A2, or 2002, from the radicand, and
dividing the remainder, 14756, by 2 A, or 2(200), we find that the tens
figure of the root cannot exceed 3.

Multiply 2 A + b, or 430, by b, or 30, and subtract the product ;
then in all we have subtracted A2+ (2 A+b)b, or (A+b)2; that is, 2303,

Now let A = 230, the part of the root already found,
and b = the next figure of the root.

Dividing the remainder 1866 by 2 4, or 460, we find that the units
figure of the root cannot exceed 4.

Multiply 2 4 + b, or 464, by b, or 4, and subtract the product ; then
in all we have subtracted 42+ (2 A + b)d, or (4 + b)2; that is, (234)2.

Omitting the ciphers and explanation, and in each remainder writing
the next group of figures only, the work will stand as below :

547 656(234
4

43)147

129
464)18 66
1866

236. If a number has decimal places, its square will have
twice as many. E.g., 0.8°=0.64; 0.25°= 0.0625.

Hence to determine how many decimal figures there will
be in the square root of a number, we divide its decimal
figures into groups of two figures each, beginning at the
decimal point. If the group to the right does not contain
two figures, a cipher must be annexed.

Ex. Find the square root of 5727.2976.
Formula, A2+ (24 +0)b=(4+ D)2
7627 .29 76(86.76
6
166)11 27
996
1727)1 81 29
12089
17846)10 40 76
1040 76

Here at first A =80,b=6; next 4 =86, b = 0.7, next 4 = 86.7,
b =0.08.
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Exercise 91.
Find the square root of the numbers:

1. 2916. 9. 29376400. 17. 0.0022448644.
2. 2601. 10. 52.2729. 18. 0.68112009.
3. 17956. 11. 53.7289. 19. 25/49.

4. 33489. 12. 883.2784. 20. 64/81.

5. 119025. 13. 1.97262025. 21. 121/36.
6. 15129. 14. 3080.25. 22. 144/49.
7. 103041. 15. 41.2164. 23. 169/196.
8. 835396. 16. 384524.01. 24. 225/289.

236. Cube root. Since v/1=1, and /1000 = 10, it fol-
lows that the cube root of any number between 1 and 1000
lies between 1 and 10; that is, if a number contains one,
two, or three integral figures, its cube root contains one
integral figure. Again, /1000 = 10, and /1000000 = 100;
hence, if a number contains four, five, or six integral figures,
its cube root contains two integral figures; and sa on.

Hence, to determine how many integral figures there are
in the cube root of a number, we divide its integral figures
into groups of three figures each, beginning at units’ place.
The last group to the left may contain only one or two
figures. ’

When the figures of a number have been divided into
groups of three figures each, from what precedes it follows
that,

(i) The first figure in the cube root of a decimal number s
the cube root of the greatest cube in the first, or left-hand,
group of figures. '

Using a notation analogous to that in § 234, we have

radicand — 4* = (3 4*+ 3 AB + B%) B.
*. (radicand — 4%+ (3 4*+ 3 AB+ B)=B.
. (radicand — 4%+ 3 4*>b. . (6]
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From inequality (1) it follows that,

(ii) If the cube of the first part of the root is subtracted
Jrom the radicand and the remainder is divided by three times
the square of this part of the root, the quotient will be greater
than the next figure of the root.

E.g., by (i), the first or tens’ figure in the cube root of
614 125
is 8, since 83, or 512, is the greatest perfect cube in 614.

The radicand less (80)3 is 102125.
Hence, by (ii), the units’ figure of the root cannot exceed

102125 + 8(80)2, or 6.

The radicand less (86)3 is zero.
Hence, the required root is 86.

Instead of finding each cube independently, much labor
can be saved by using the relation

L+ @AL+3A4b+)b=(A+Db),

and thus making use of the previous cubes.
Thus, the work in the example above is usually written
a8 below, without the explanations to the left:
614 125(85
A= , 512 000
842 =3(80)2 = 19200) [102125
84b=38.80-56= 1200
b= 62 = 26
204256 | 102126

237. If a number has decimal places, its cube will have
three times as many. Thus 0.2%=0.008; 0.12% = 0.001728.
Hence, to determine how many decimal figures there will
be in the cube root of a number, we divide its decimal
figures into groups of three figures each, beginning at the
decimal point.

If the group to the right does not contain three figures,
ciphers must be annexed.
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Ex. Find the cube root of 120554.216.
Formula, 22+ £2+340+0)d=(4+Dd)3%

129 554 .216(50.6
125
750000 | 4 554 216
9000
36
759036 | 4 554 218

Here at first 4 =50, b =0; next 4 =50.0,  =0.6.

Exercise 92.
Find the cube root of the numbers:
1. 74088. 7. 103.823. 18. 56.623104.
2. 15625. 8. 884.736. 14. 264.609288.
3. 32768. 9. 1953125. 15. 1076890625
4. 110592. 10. 7077888. 16. 8/1.
5. 262144, 11. 2.803221. 17. 64/125.
6. 1481544, 12. 12.812904. 18. 343/1728.

INCOMMENSURABLE ROOTS, OR IRRATIONAL NUMBERS.

238. The nth power of a whole number is evidently a
whole number which is a. perfect ath power; and the nth
power of a fraction (whose numerator and denominator are
prime to each other) is a fraction whose numerator and de-
nominator are perfect nth powers prime to each other.

Hence, it follows that

(i) The nth root of a whole number which is not the nth
power of another whole number is not a commensurable
number.

(ii) The nth root of a fraction whose numerator and d..
nominator (prime to each other) are not the nth powers of
whole numbers, i3 not a commensurable number.
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E.g., a8 2 is not the square of any whole number, /2 is not a com-
mensurable number, and therefore is not as yet included in our number
system. The same is true of /3, /6, 37 ---.

Again, as the terms of the fraction 2/8 are prime to each other and
are not the squares of whole numbers, /(2/3) is not a commensurable
number, and therefore is not as yet included in our number system.

239. To enlarge our number concept so as to give a mean-
ing to such an expression as /2, /5, or 4/(2/3), (a meaning
which shall be consistent with § 213), we define J/u as the
number whose nth power is u, even when u is not a perfect nth
power; that is {/u always satisfies the relation (Y/u)" = u.

E.g., /2 is the number whose square is 2, i.e. (v2)r=2.

+  Again, /6 is the number whose cube is 5, i.e. (3/6)% = 6.

240. The nth root of a number which is not a perfect nth
power is called an incommensurable root or aa irrational
number; as, V2, V3.

241. An irrational number, or any other number which is
not a whole or a fractional number, is called an incommen-
surable number; as /3, </5, or the ratio of the circum-
ference of a circle to its diameter.

242, Approximate values of incommensurabie roots.

If to 2 we add ciphers and apply the method of finding
the square root, we obtain the result below :

2.00000000 )1.4142 ...
1

24) 100 1st remainder
0 _
281)400 2d remainder
281
2824)11900  3d remainder
11296 -
28282)60400 4th remainder
56664

0.00003836 5th remainder
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Each remainder in the above process is the difference be-
tween 2 and the square of the corresponding part of the root.

This remainder decreases rapidly as we increase the num-
ber of figures in the root; hence the square of the root
found approaches nearer and continually nearer 2; and
therefore the root itself approaches nearer and continually
nearer ~/2.

By continuing the operation indefinitely we obtain a com-
mensurable number which approaches indefinitely near and
continually nearer /2, but which, by § 238, can never reach
+/2. This increasing commensurable number is- said to
approach the incommensurable root /2 as its limit.

In like manner we can find a commensurable number
which shall differ from any incommensurable root by as
little as we please.

Exercise 03.

Obtain to three places of decimals the value of the roots:
1. 3. 4. /7. 1.,/03. 10. 4/0.004. 13. 2.
2. /5. 5. y11. 8. /0.5. 11. 4/0.005. 14. -¥4.
3. 6. 6. /13. 9. 4/0.03. 12. /2.5. 15. Y/2.5.

243. The quality-unit +1 or — 1 multiplied by an arith-
metic incommensurable number is a positive or a negative
incommensurable number ; as, +~/2, —~/3, —~Y/b.

244, The fundamental laws which have been proved for
commensurable numbers hold also for incommensurable
numbers. The proof of these laws for incommensurable
numbers will be found in the chapter on the theory of
limits.

246. An irrational expression is one which involves the nth
root of an expression which is not a perfect nth power; as,
V2, /(a+b). Any irrational numeral expression denotes
an irrational number. But, just as a fractional literal
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expression denotes both integral and fractional numbers,
80 an irrational literal expression denotes both rational and
irrational numbers.

E.g., the irrational literal expression \/a denotes a commensurable
or rational number, when ¢ =1, 4, 9, 1/4, 4/9, ... and an incommen-
surable or irrational number when @ = 2, 3, 5, ...

Observe that commensurable and incommensurable apply
to numbers only ; while rational and irrational apply to
either numbers or expressions.

HExercise 94.

1. Is the number /4 commensurable or incommensura-
ble? /6? /9? /12? /14?7 /(4/9)? -¥(8/27)?
33?7 ¥216?

2. Is the expression -/a* rational or irrational? /z?
Y& Ja+? VEEa? e/)?

8. Give ten sets of values of a and # for which /(a/z)
denotes a commensurable, or rational, number.



CHAPTER XVII
SURDS

248. A surd number is an irrational number in‘which the
radicand is a rational number; in other words, it is an
incommensurable root of a commensurable number.

E.g., /6, v/1, v/(2/3) are surd numbers; so also is \/a when a
denotes a commensurable number which is not a perfect square.

The incommensurable root /(8 + 1/2) is not a surd number, since
the radicand 8 + /2 is not a commensurable number.

247, A surd expression is an irrational expression in
which each radicand is a rational expression; as v/a, V5/6,

Ve ++/2.

248. Surds of different orders. A surd of the second order,

or a quadratic surd, is a surd with the index 2; as /5, v/a.
A surd of the nth order is a surd with the index n; as {/a.
Observe that 3/ /5 is a surd of the 6th order.

249. A rational number or expression can be written in
the form of a surd of any order.

Eyg., 8 = /9, ¥27, /81, or {/243
and a=/a? yad, ¥at, or y/ab.

260. A surd expression is in its simplest form when each
radicand is integral, its numeral factor being as small as
possible, and its literal factor of as low degree as possible.

E.g., the simplest form of the surd /8 is 2,/2.

The simplest form of the surd /(16 z4y®) is 2 zy /(2 y?).
263
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261, Reduction of surds to their simplest form. The cases
which most frequently occur are the three following:

I. Radicand integral. Resolve the radicand into two
factors, one of which is a perfect power of a degree equal to
the order of the surd, and apply the law, 3/(ab) = Ya - Vb.

Ex. 1. V186 = V/35.5 = 8.5,
Ex. 2 TVouzryB =TV (52%)2 -2y

=7 x6xyV2y=852%Vv2y.
Ex. 8. 5V1282% =56V (dzy)® - 2a%

=5 x 4zyV2ay=20xyv 2 2%y,

II. Radicand fractional. Multiply both the numerator
and denominator by such a number as will make the de-
nominator a perfect power of a degree equal to the order
of the surd, and apply the law, {/(a/b) =3/a/Y/b.

Ex. 1 '£=a3—5-=ﬂ.
"7 N49 ]

3/3x _V76 ax _ V75 a%x

B2 \iaw (5ab?)3~  bab?

III. Factor common to exponent of radicand and index
of root,

In this case we apply the following principle:

The index of the root and the exponent of the radicand can
be multiplied or divided by the same number.

That is, va" =3/x/am =/a” §§ 223, 227
Ex.1. ¥(27a*?)=V/(3ax) =+/(8 ax).

Ex. 2. (16 a*z!?) = VP - (2 az)t
= Y28 V(2 ax)t=2/(2 az).



SURDS 255

Exercise 986.

Reduce each of the following surds to its simplest form :

1. /147, 15. Va'+2a%+ab’,, a o™

2. /288, - 16. }-/h "N @

3. 3/150. 17. 3% 26. (a+b) o +b'

4. 2./720. 18. A4 o7, ©_jB—2

5. -3/256. 19. 3-Y%. b\ 2*¢

6. ~/432. 2. 3,,, 52° 28. ~/25.

7. 5/245. 9’y 29. ¥/(8/af).

8. 1029, 21. 2—2\“’/%“4 30. /(2.

9. /3125 51 49

10. V—2187. o9, 20 4/&‘_. .

. T a NV8b 32. ¥/(9/36).

12. Y—IB#p. 23 a 'ZZ 33. Y(@/¥).

13. Yy, S 34. ¥/(32/aY).

14, Yortry s Ve 35. "%/(2*/a).
36. /(3" /™). 38. /(— 54 attiyM).
37. V(b — )@ — ). 39. /(64 a’2v).

252, Surds which are rational multiples of the same
monomial surd are said to be like, or similar, surds.

E.g.,2+/3 and /3/7 are like surds, so also are by/a and V4a, or
2ya.
253. To add or subtract surds, we reduce them to their
simplest form, and unite those that are similar.
Ex. 1. Y135 + 40 =3.Y5 + 25 = 5 ¥/b.
Ex. 2. 4v128 + 4V76 — 6V10Z = 32/2 + 20/3 — 45./2
=20y/3 — 13/2.
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Exercise 96.

Simplify each of the following surd expressions:

1. /27 ++/48. 11. /252 —~/294 — 48/}
2. 2+/180 —/405. 12. 4./63 +5/7 —8/28.
3. 2./28 —/63. 13. Val+ }vVat —3V2T %
4. 5/208—3~/325. 14, Ybh+-/h—3vE
. /512 —/50 —/98.  15. V2Td—V/8c4ViZ5e.
6. 3/12 —/2T +2/75. 16. V@b —~/b* +~/320.
7. A4 — 5176 +2./99. 17. Vakz +Vb% —VEdbm.
8. 24/363—5./243+/192. 18. 3/147 — §/} —/or-
9. 23/189+3Y875—TY56. 19. 3/4 + 3% — Vi

10. /81 —Ty/192 4-4/648. 20. 1;v/72 — }~/} +6-/21}.
21. /(9ay) +/(27 2¥y) + 5~/(729 2%°).
22. 2-Y/(3a%) —/(9 a*d®) + /(125 a'b).
23. /(4a®+4a®) +/(9 ab® + 9°).
24, V&P -2y —Var—yP—V(=+y) @ —9).

254, Surds of different orders can be reduced to identical
surds of the same order. This order can be any common
multiple of each of the given orders, but it is usua.lly
most convement to choose the least common multlple

Ex. 1. Reduce \/_’ \/_ \/_— &5 to identical surds of the same order
The L.C.M. of the indices 3, 4, and 6 is 12, By IIL of. § 251, .

VasVa; Yp=Vr; Ve=Vom.,
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Ex. 8. Which is the greater /6 or /10 ?
Reducing these surds to the same order, we have

U6 = et = 11206, [¢))
and V10 = ¥/108 = ¥/1000. @
From their values in (1) and (2), it follows that 3/8 > ¥/10.

256. The product of two or more surds is found by ap-
plying the law
Ya/b = Y(ab). §222
Ex. 1. /Tx28=y/Tx2/71=2x7=14.
Ex. 2. 214 x 21 = 2/(14 x 21) = 2,/(72 x 6) = 14,/8.

When the surds are of different orders, they should be
reduced to the same order.

Ex. 8. /3 x /2 =88 x &/28 = &/(38 x 22) = ¢/108.

Conversely to § 251, the coefficient of a surd can be

brought under the radical sign by reducing it to the form
of a surd of the same order.

Ex. 4. 5.3 =,/26 x \/3 = /5.
Ex. 8. z¥/28= y/z5 x /2= Yt

Ex. 6. Multiply 21/3 + 8/2 by 4./8 — 61/2.
The work can be arranged as below :

2V3 + 8V2
4vV3 —5V2

24 +2v6 — 80 =2Vv6 — 6.

256, In finding powers of monomial surds we often make
use of the law, (/a)" = Va~ (§ 226).
Ex. 1. (3¥Vaz)r=3(Vaz)? §110
=9¥/(ax)? =9y (a%3).
Ex. 8. Qyx)i=2%(\/x)t=82/2.
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When applicable, the identities in Chap. IX. should be
used in finding the products of polynomial surds.

Ex. 8. (\/3_\/5)2=(\/§)2—2\/§.\/54;(\/E)2
=8-2V16+5=8—2VI5.

257, Two binomial quadratic surds which differ only in

the quality of a surd term are called conjugate surds.

Eg., 8 + /2 and 3 — /2 are conjugate surds ; so also are /a+ /b
and /a — /b, or \/a + /b and —/a + \/b.

The product of two conjugate surds is rational.
Eg, B+v2)B—v2)=8—(v2)=T.
(va +vb)(va—-vb)=(va)'—(vb)?=a—b.

Exercise 9'7.

Reduce to surds of the same order:

1. /3, V7. ) 6. /a, ¥a, Ya.
2. v(1/2), ¥(2/3). 7. 2, /3, V4
3. V2, v/3. 8. /3,2, ¥T.
4. V8, /3, 6. 9. %/a’ b e
5. /5, Y11, ¥13.

Bring the coefficient under the radical sign:
10. 11./2. 11. 14./5. 12. 6-y4. 13. 5¥6.

4 7 3ab [20 ¢ 2a 27 «*
R LR 15. = . .24 .
14 11\/78 5 2¢ VN9a? 16 3 a?

Which is the greater:

17. /5or y10°? 19. 5y/2 or /3447
18. /3 or ¥/5}? 20. /5or Y10?
21. ¥a? or /a, when a <1? when a>1?
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Obtain the simplest form for each of the following

prod

22.

23
24
25
26
27

28

ucts :

21/15 x 3+/5.

. 812 x 34/24.

. V12 X /27 X /75.
. Y16 x /6 x 9.

. 12 x Y75 x ¥/30.
. V6 x 12 x /18
. Ve t+2xVr—2

29

30.
31.
32.
33.
34.

36.

. V168 x /147.

5128 x 2-/432.
/10 x ~3/200.

V4 x~/8.

(v/6—3) (\/6+~/3).
(V6= (V6+/T).
(Ve =) (Ve +v/a).

36 (—~/¢—~/a)(— /e +~/a).
87. (=Vay +/r) (Va +v/n).

Find each of the following powers:

38.
39.
40.
41.
50.
51.
52.
B3.

(V2 42.
(@/3). 43.
(/=) 44.
(Ya). 45.
(V3 =/

(4 —2+/3)

(V5 +2+/3)"
(V3 —/2)"

(Vaby'
(Vo
(Va)'.
(V)"
54
56
66
b7

46. (V')
. (2Va%z)*
. (3Va)".
. @VE =)

(Y2 =Y

47
48
49

. (VE—Y2)"
- V2V HVE)
. (42 +3)

Find each of the following products, and simplify :
58. (2+/5+ 3+/3)(3/5 — 4+/3).

69. (/2 4++/3 ++/6) (2+/2 + 3+/3 ++/6).
60. (5+Y4) (V3 ++2).
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61. (2v/3 +¥2) (2/3 —-¥/4).

62. (8 —3/7)(8 + 3/7).

63. (1++/2—+/3).

64. (V2++/3—5)(V2Z +/3 +/5).

258. Division of surds.

Suppose it is required to compute the value of \/6//7. We might
find /6, which is 2.286 ...; then find /7, which is 2.645...; and
finally divide 2.236 ... by 2.645 ....

Of these three long operations two will be avoided if we first multi-
ply both dividend and divisor by /7, as below :

‘/5/\/7 =185/7
=5.916 ... /7 = 0.845 ...,

Observe that the new divisor is a rational number.
This example illustrates the following principle :

The quotient of one surd divided by another is put in the
simplest form for computation by multiplying both divi-
dend and divisor by such a factor as will render the divisor
rational.

This process is called rationalizing the divisor, or rational-
tzing the denominator.

The factor by which we multiply the divisor to obtain a
rational divisor is called the rationalizing factor; as, /7
above.

The cases which most frequently occur are the three
following:

I. When the divisor is a monomial surd ; as, /2™
2 _ 2x.6 _2

Ex. 1. -2 = =2 s
L 55 3 bxve 18
Ex, 2. 0 _=_bXVve® _b ~/ad.

" eYat cYaix Yad ca

Here the rationalizing factor is /a8,
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The simplest rationalizing factor of V/z™ is evidently

II. When the divisor is a binomial quadratic surd, the
simplest rationalizing factor is the conjugate of the divisor.

Ex. 1. _AL. G+vDEB+yN) _22+8y7
-V B-yDB+vT) 9-1

Ex. 2. Yo+vb_(va+yb)(Va+vh)_ a+2Vab+b
Va—-vb T (vVa—yb)(va+yd)T  a-b

=11+ 4/7.

ITII. When the divisor is of the form (y/a + /b) + /¢,
first multiply by the expression (y/a 4 /b) — +/c.
The divisor thus becomes
(Va+ VB = (v or @+b—0) +2y/(ab). (1)
Next we multiply by the conjugate surd
(a + b—c) — 2 /(ab).
The divisor thus becomes the rational expression
(@+b—c)— (2Vab)L
Ex. V2 V2 (/2 +v/3 ++/5)
T VRAVB =B (V2 +v8) = vBI[(V2 +v/3) 6]
=2+y6+10 _2+6+y10
(V2+ V36 2v6
=2+6+10)x /8
26 x /6

_2/6+642y15_ \/6+3+/15
12 6

259, When applicable, the identities in Chapter IX. should
be used in wmtmg the quotient of two bmomla.l surds,

\/z’+\/y‘ (\/z)’+(\/y)'
. VE+\VY VZ+VY
T sx—-VvVay+y.
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Exercise 8.
Compute to three places of decimals:
1. 14+ /2. 3. 48+ /6. 6. 144 + /6.
2. 25+ /5. 4 V24++/8. 6 A+ /23,

Rationalize the denominator and simplify :

7. 3v/3/(2+/2). 11. 12/3/3. 15. /a/-y/a.
8. 15/4/(8/5). 12. 2:/6/+/2. 18. ~/a/~/a.
9. 21/y/(7/3). 18. 3+/2/¥9. 17. Ya/Ya.

10. 10/Y5. 14. 20/(3-416). 18. /(az)/Y/=

19. 425; 27. ___i___
V5 + /3 2+v/3++/5

90, 1P +14/3, gs. 1+ V346
15—-2/3 "1442-—

91, ¥5+3v8 99, V3 .
26—~3 VZ+v3+vb
V/6—312 3

22. zm 80. B Jny e &

ps. 23432, 5, VE—Z2+Va

5+26 Vz—-2—-Vea
§4. V9+2—3 ‘ go, a+Vva'+3
\/9+a:’+3 T a—Va+3
25 __L_. 33. Va—b—Va+b
) x4 sz-—y’ Va—b+va+b
%6, 1 34, - S+4V3

14243 " VB+v2—/6
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‘Write each of the following quotients:

3b.
38.
37.
38.
39.
40.

(@—2) + (va—/a).

(az — ay)/ (V& +~/Y)-
1-1/z)+1A+1/~/).

(a/b — z/y)+[/(a/b)+~/(=/9)]-
(V@ = /) + (v/a— ).
@vz+yvy) + (V2 +VY)

" Rationalize the denominator of each fraction:

a — ¥ e, YIHZ VI3
z+Va—yt Vit #+vV1l-—2a?
49. ___:x’___. . 2'\/a+b—-3'\/a-— b
Vet al+a 2Va+b—Va—b
o, V104543 s6. (VBHVE(/B+/2)
V3 +v1I0—5 VZ+~/3 +/5
260. A root of a monomial surd is found by applying the
law VVa= Y. § 227
Ex. 1. ¥T1=YT

Observe that ¥/ ¥/a = {/+/a, since each member =*%/a.
Ex. 2. yv@)=yv@dad)=y2x).

Bxercise 99,

Simplify each of the following expressions:

1. YYQTad). 5. Y(@yo). 9. ¥/(@'/V/%)-
2. VY@ 6. Y(@5a/16). 10. " (/).
8. Yv@). 1. Y@Va). 1. Y@/ ).
4 YY) 8. V(2/Y2). 12. /(be/V/bc).
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PROPERTIES OF QUADRATIC SURDS.

2L If r+\y=a+/b, @

where x and a are rational numbers, and /y and /b are surd

numbers; then,
x=aand y==o. ()]

Proof. Transposing a and squaring, from (1) we obtain
@—a)y+2(x—a)\/y+y=>.
o 2@ —a)yy=(b—y)— (& —a). ®)
Since a surd number cannot equal a rational number,
equation (3) is satisfied when and only when 2 =a and
y=>b
262. A quadratic surd number cannot be equal to the sum

of a rational number, other than zero, and another quadratic
surd number.

Proof. Let Vb =2++/y, @

where # is a rational number and /b and +/y are surd
numbers; then, by § 261, we have

=0 and y=>. @)
263. Square root of the binomial surd a + /6.
Suppose Va +£/b=~/2 £~/¥. @
Square, atVb=2x+y+2Vay.

Hence, by § 261, we have
z+y=a, 2Voy=Vb;
or 2+y=a, 4dxy=>b. ()
Solving system (c¢) for # and y, and substituting their
values in (1), we obtain the value of \/(a + \/b)

We shall here consider only those cases in which system
() can be golved by inspection.
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Ex. 1. Find the square root of 18 + 8./6.
Assume VI8 486 =2 + . Q)
Square 18+8\/5=z+y4§2x/z—y.
s x4+y=18, and 2Vzy =8V5; § 261
or z +y =18, and zy = 80. (a)
By inspection we see that one solution of system (a) is
z=8, y=10.
o VIB 186 =/8 + /10 =22 + /10,
Ex. 2. Extract the squa-.re root of 83 — 12/85.
Assume VB3 —121/36 =1/ —/¥.
Square 83 —124/85 =z + y — 2Vay.
oz +y =83, and 2Vzy = 12V85,
or z+ y =83, and zy = 1260.
By inspection, z = 63, and y = 20.
& VB3 —121/85 = /83 — /20 = 8/T —2/6.

By taking # =20 and y = 63, we would obtain the negative root
of the given number.

Exercise 100.

Find the square root of the binomial surds:

1. 64-/20. 6. 11—2./30.  11. 4}—4/3.
2. 12-6y3. 7. T—210. 12. 17— 2+/66.
8. 164+64/7. 8. 17—12\/2.  18. 1948/3.
4. 13—2/42. 9. 47T—4/33. 14, 11+4+4./6.

5. 28—5./12.  10. 1944422,  15. 15—4/14.

16. If a <1 arithmetically, \/a is less than 1 arithmeti-
cally; if @ > 1 arithmetically, v/« is greater than 1 arith-
metically. Hence /a equals 1 arithmetically when, and only
when, a = 1 arithmetically.



CHAPTER XVIII
IMAGINARY AND COMPLEX NUMBERS

264. Quality-units vV —1 and —V/—1. As we have seen
in § 219, an even root of a negative number, as v — 2, cannot
be a positive or a negative real number, and therefore is not
as yet included in our number system.

To give a meaning to such an expression as vV —1 or vV —2
(a meaning in harmony with § 213), we define V/~a as that
number whose nth power is ~a; that is, V/~a always satisfies

the relation _
(V~a)"= -a. @)
Thus, V' ~— 2 denotes that number whose square is — 2.
An important particular case of (1) is
(V-12=-1. 2)

Since the arithmetic value of —1 is 1, the arithmetic value

of V—1is1 (§ 263, Ex. 16); hence vV — 1 is a quality unit.
That is, V — 1 is a quality-unit whose square ts — 1.
Squaring both members of (2), we obtain

V=-1t=+1; 3
that is, the fourth power of v — 1 is equal to + 1.
Again, the opposite of the quality-unit v —1 is —v—1.
Also, (V=1p=(V-1p.-V-1=—vV—1; @)
that is, the cube of v/ — 1 is equal to its opposite —/— 1.

The quality-units vV —1 and —+V/—1 involve the idea
of the arithmetic one and that of oppositeness to each other.
266
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Observe carefully the above relations of the quality-unit
vV—1to -1, +1,and — V-1

The quality-units V' —1 and —+/—1 are called imaginary
units.

The units vV —1 and —+V' —1 are for brevity often de-
noted by ¢ and — i, ¢ being used as a numeral.

Note. The word imaginary, as here used, must not be understood
as implying that the units i and — i are any less real than + 1 and
—1. The expression V— 1 was called imaginary when it first made
its appearance in Algebra before its meaning and uses were under-
- stood. The name is unfortunate, but with the above explanation we
shall use it.

265. Imaginary numbers. Any arithmetic multiple of the
imaginary unit ¢ or — i is called an imaginary number.

An imaginary number is commensurable or incommensura-
ble, according as its arithmetic factor is commensurable or
incommensurable.

E.g., i3, i(8/56), — {7 are commensurable, while {\/2 and
—i4/(2/3) are incommensurable imaginary numbers.

266. Multiplication by the imaginary unit /—1, or ¢, is
defined by assuming the commutative law; that is, a being
any number, we assume that

axVvV—1l=vV—-1xa, or a xi=ia.

267. Since ¢-a = a - i, the imaginary number ¢{-a or —i-a
can be written ai or — ai.
Imaginary whole numbers form the following series:

ey —34, —2i, —i, 0, i, 2i, 3i,

Observe that the one and only number which is common
to the series of real and imaginary numbers is 0.
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268. Geometric representation of quality-units.

A directed line is a line whose direction and length are both consid-
ered. To represent geometrically quality-numbers we use directed
lines. Of the directed line 04,

O is the origin and A the end.

-~ =~ Let OA=+1; then 04'=-1,
/ l;i‘ AN Substituting these values in
+ (+1.V=1.V=i=-1,
we obtain
04.V=1.V=1=04"

That is, multiplying 04 by

\ i / V=1 twice in succession re-

S d verses its direction; hence we

= can assume that multiplying 04

B by V=1 twice in succession re-

volves 0OA through two right

angles in the plane ABA' and in a direction opposite to that of the

hands of a clock.

Hence multiplying 04 by V—1 once would revolve OA through

one right angle in this direction ; that is,

-

IS

|

-

+

[y
\\‘--_ S -

-
PR
V=1
Ny

04.V-1=0B. [¢))
But OA.-V=1=(+1).V=1=vV-1 @)
From (1), (2), OB=VvV—T1, or i

e OB'=— OB=-1.

Hence, if the primary quality-unit + 1 is represented by the
directed line OA, the quality-units — 1, ¢, and — ¢ will be represented
by the directed lines 04’, OB, and OB/, respectively.

As the lines OB and OB' are just as real as the lines 04 and 04/,
80 the quality-units ¢ and — ¢ are just as real as + 1 and — 1.

Arithmetic multiples of ¢ and — ¢ can be represented by distances
along the lines OB and OB’ or their extensions, just as multiples of
+1 and —1 are represented by distances along the lines 04 and
04’ or their extensions.

Again, if in a football game we denote the forces exerted in the
direction OA by positive real numbers ; then liegative real numbers
will denote the forces exerted in the opposite direction 0A4’, positive
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imaginary numbers will denote the forces exerted in the direction OB,
and negative imaginary numbers will denote the forces exerted in the
direction OB'. '

To express by numbers the magnitudes and directions of the many
other forces in the game we need still further to enlarge our concept
of quality-numbers, as is done in § 285.

269. Since imaginary numbers are simply arithmetic mul-
tiples of the units ¢ and — 4, they are added and subtracted
the same as real numbers.

That is, ai + bi = (a £ b)i, @
which is the converse of the distributive law.

Ex.1. 4i+6i=(4+6)i=104

Ex. 2. (7/8)i—(6/8)i=(7/8—-5/3)i=(2/3)1.

270, When the imaginary unit is a factor of a product, the
distributive law follows from its converse in § 269, and the
agsociative law follows from the commutative law in § 266 ;

that is, (a £ b)i=ai + bi, § 269
and ai « bi = i*ab = — ab. § 267

271, Powers of i. From § 264, we have

P=—1, P=—1i, *=+1. @

Ex. 1l 7 =#4.B=(+1)(—-H=—1. by (1)

Ex. 2. 0 =(#)22 =(+ 1)3(— )=~ 1 by (2)

Ex. 3. @8 =(i)% =(+1)%i =1 by (1)
If n is any positive integer including zero, we have

" == 1D)=+1; )

"= =7, by (2)

= =1, by (1), (2)

P = i = ], by (1), (2)
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Hence, any even power of i s +1 or — 1, and any odd
power of i 187 or —I.

272, The square root of any negative number is an tmagi
nary number;

that is, V-a=./a-i. @
Proof. By the commutative and associative laws we have

(Ve - V=1y=(a)(V=1)}t="a; § 271

hence, Va6V —1=+/"a, or conversely (1). § 221
Eg., V—-18=i.,/16 =41, or 4V -1.
and V—at=i.Va=ai, or aV—-1.

273, To add or subtract imaginary numbers éiven in the
form V-a, we first reduce them to the type-form, v/a - <.

Ex.l. V=8 +V_81—-V—36=Ti+9i—6i
=(7+9—6)i =101, or 10vV—1.

Ex. 2. V-9a?+V-402—-V-T7¢"=3a.1+2b-i—¢c\/T-1
=Ba+2b—cy)i.

274, From the commutative and associative laws we have
the following principle:

The product of two or more quality-numbers is equal to the
product of their quality-units into the product of their arith-
metic values.

Ex. 1. V=8(—y11)=1."1.y/6. /11 =—i./65, or —V — bb.
Ex.2. V=3.V-T=i3.T=—,2L

Ex. 8. V=2.V=8.V—=b=13,/2./38. \/b=—i/380, or —V—30.
Ex. 4. V-a.V-b.V-c- V-a=ity/a/b/cy/n = Vabed.
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Exercise 101.
Simplify each of the following expressions:

1. V—386+V—49—+v—100.
V—4-vV-9+V-16.
V—-81—-vV-64—-v—-121.
vV=9a—-—V—-—4a?—-vV—-16a%
V—-36b0"—V—490 +V— 810
V—=(x+al+V—(z—a)l
7. 3V-a+ TV=c —11V=b + 2V~ (m*d).

L S

8. V2.vV-=3. 12. V—4.v-09.

9. V3.V—5.. 13. V—-9-V16.

10. vV—=5.vV—11. 14. V—=2.vV/=3.V=T.
1. V—2.vV-T1. 16. V6.V —2.v/—5.

16. V5-vV=2-V=3.V—14
. V=@ VPV R
18. V—3ax-vV—3bx -V — 4ab.
19. (V=2+V-5)(V-3+V-7).
20. 2V=3+3V-5)(6V-3-2V-5)
2. (V=2 +V=9)(V=2-V=y).
22. V=@ 2. (V=0 24 V= 2. (V=p)

276, Quotient of one quality-unit by another.
i+~i=zl;i+(+D)=ii+ () =—17; § 84
F+lai=t+i=>=—i; § 264

—1si=t+i=i
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Eg, 1l+#=l+i=—1i; —1+¥=-1+(-1)=1;
i+{1=i+(—-i)=-1.

276. From the commutative and associative laws we have
the following principle:

The quotient of two quality-numbers is equal to the quotient

of their quality-units into the quotient of their arithmetic
values.

Ex.1 MY=b_1 6 _+2

: —10 & vI0 2

Ex.2. Y=3_ 1 VB_;v2  V-21
Y = T A 7

Ex. 8. V-a/V-b=(i/i)(va/b)= Va/b. .
Ex. 4. V¥a/V-b=(*+1/1)(va/vb)=—iVa/lb, or —V-(a/b).

Bxercise 102.
Perform the operation of division in
1. @4, 3. 1+4 5. 1+
. P 4. —1+4 6. V—1d+vV -2
. V=16 +vV—4. 11. V-a® + VB

2
7
8. V—15+v—3. 12. (V=12—V=15)+V—3.
9

. V& +~V"a. 13. (V-a+V-b) +V-e
10. V-(zy) +Va. 14. (V16 —V8) +V—-2.
15. i+ 16, —i+i"% 17, #4718, B8

COMPLEX NUMBERS.

277. The sum of a real number and an imaginary number
is called a complex number, as 4 + 54, 7+ 3 <.

The general expression for a complex number is evidently
a + bi, where a and b are any real numbers.
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When b =0, a + bi = a, a real number.
When a =0, a + bi = bi, an imaginary number.

278. We define addition of complex numbers by assum-
ing the commutative, and therefore the associative, law of
addition for real and imaginary numbers.

Hence, in adding or subtracting complex numbers the real
parts can be added or subtracted by themselves and the
imaginary parts by themselves.

Thatis, (a+ b)) £ (c+d)=(atc)+ (bt d)i. ()]

Ex. When is the second member of (1) a complex number ? When
an imaginary number? When a real number, ?

279, If two complex numbers are equal, their real parts are
equal, and their imaginary parts are equal.

Proof. Let c at+bi=c+di, @
where a, b, ¢, d are all real numbers.
Transposing, a—c=di—bi. )

But, if a real number is equal to an imaginary number,
each is zero (§ 267); hence,

a—c=00or a=c,

and di—bi=0, or d=b.
An important case of this theorem is the following:

If a+bi=0, then a =0 and b=0.

280. Two complex numbers which differ only in the
signs before their imaginary terms are called conjugate com-
plex numbers, as a + b and a — bi.

Since (a+b)+(a—bi)=2a,

the sum of two conjugate complex numbers is real.
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281. Multiplication by a complex number is defined by
assuming the distributive law; that is,

(a + bi) (¢ + di) = ac + adi + bei + bda®
= (ac — bd) + (ad + bc)i. @

Before multiplying one complex number by another it is
convenient to reduce each to the type-form a + bi.

Ex. (8+V—=56)(4—V=38)=(8++/6-0)(4 —/3-1)
=12 + (4/6 — 8,/3)i + y/16.
282. From (1) in § 281, it follows that the product of two
complex numbers is, in general, a complex number.

But, the product of two conjugate complexz numbers is real
and positive.

Proof.  (a + bi) (@ — bi) = a® — (bi)=a? 4 0%,
Eg. (=84 VD) (—8—vV=)=(— 82— (V=) =11

283. The quotient of one complex number by another is, in
general, a complex number.

Proof. a+bz:E(a.+b?')(c—dvf)
c+di— (¢4 di)(c — di)
_ac+bd  be—ad,
=er@  dra @

284, From (1) in § 283, it follows that when the divisor
is a complex number, the quotient can be expressed as a
complex number by multiplying both the dividend and divi-
sor by the conjugate of the divisor.

Ex. 4+8i_(4+3)(3+21)
8—2i (3-2i)(8+219)

_6+17¢_

9+4 13+—
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Bxercise 103.

Find each of the following sums and produects:

1.

2.

10.
11.
12.
13.
14.
15.
16.
17.

18.

® ® 2 e o =

C+VvV-9H+3B-v-1).

B +V=9) - (T—V—16).
B—20)+(6+519).

8 +V—=36) — (5 +V—25).

@ +39)—(3—49).
C+V=-3)+2-V-=3)
C+VvV=9HB-V-9).

(4 +V—16)(8 —vV—25).
G+2v-92—-3V=-19).
A+vV=7)(2-V-16).
B+V-52—-V-3).

(V2 +V=2)(vV3—-V=3).
@2+V=3@2-Vv=3).
(—4=V=5)(—4+V-D)

(-7 —;/——11)(— 7+V-11).
@V—z+yV—y)@V—z—yV—y).
(V=T+5V=3)(V=T+3V-2).
@ +v-=-3)

19. (V=-3+V2)? 21. (2—3V—-2)%
20. (2 + 3ai)’ 22. (a+ ci)s
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Reduce each of the following expressions to the common

Jorm a+1ib: :
28, — 1 . g OFV-—2
2-vV=3 a—V—-z
24. 1+_ V"l. 27 1

1—v—1 "3_2v—3
44V=2 o 3+4V=5
2—-vV=2 2-3V=5
32. Show that

25.

[(—14+V=3)/2P=+1; also [(—1—

29. ?iz___ V—l.
2-3v-1
14314

30. 3_4:

31. §+— ”"‘5.
4 —v-=T

V=92 =+1;

and that therefore there are at least three cube roots of 4-1.

33. In § 281, when is the product a complex number ?
‘When an imaginary number ? When a real number ?

34. In § 283, when is the quotient a complex number ?
When an imaginary number ? When a real number ?

286. Geometric representation of a complex number.

To find the sum of + 4 and — 1 geometrically, we lay off OM equal
to 4 in the positive direction ; then from the end of OM we lay of MB

P

0 B 4 ‘ s

equal to 1 in the nega-
tive direction. The
straight line OB, which
extends from the origin
O of the line OM to the
end B of the line MB,
is the sum of + 4 and
—1; that is, the sum
is the directed line
drawn from the origin
of the first line to the
end of the second.
Similarly, to con-
struct the sum 4 4 314,
we lay off OM equal to

+ 4; at M, the end of OM, we erect a perpendicular and on it, in the
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direction of positive imaginaries, lay off M P three units long; then
OP, t.e. the directed line extending from the origin O of the first line
to the end P of the second line, will represent the complex number
4+13.

From the right-angled triangle OM P we have

the length of OP = V42 4 32 =5.

If we take OH = one unit long and draw HR parallel to MP, then
from the similar triangles ORH and OMP we have OR =4/5 and
RH=i(3/5), that is, the directed unit-line O H represents 4 /5+i(3/5),
and OP, which represents 4 4 i 3, is 5 times this unit-line.

Hence the arithmetic value of the complex numnber 4 + i 3 is 6, and
its quality-unit is 4/6 + (8/6), which illustrates § 288.

286. Quality-unit and modulus of @ + /6. Let » denote the
arithmetic value of Va? 4 b% then r is the arithmetic value,
or modulus, of the complex number a 4+ ib and a/r + i /r is
its quality-unit.

E.g., the modulus of the complex number —1/2—1%./3/2 is
V(=172 + (— v3/2)%, or 1; hence —1/2 — V—38/2 is itself a
quality-unit. The modulus of 5 —V—11 is V52 4 (= /11)2, or 6,
and its quality-unit is 5/6 — iVII /6.

Ex. 1. Find the modulus and quality-unit of 8 + iy/7; 2 —iy/5;
1+V=38;1-V_8; \8/2+i/2; 5—1i2; T—V—56.

Since a+ib= (a/r+ib/r)r, @

any complex number can be written as an arithmetic multiple
of a quality-unit.

a + ib is called the common form and (a/r 4 ib/r)r the
type form of a complex number.

The general quality-unit a/r 4+ ib/r denotes as many dif-
ferent particular quality-units as there are different directed
unit-lines in the plane MOP from the point O.

Ex. 2. Construct the quality-unit of each of the complex numbers
in example 1 above.

Ex. 3. Show that the arithmetic value of a/r 4 ib/r is 1.



CHAPTER XIX
QUADRATIC EQUATIONS IN ONE UNKNOWN

287. By the principles of equivalence of equations in
Chapter V1I. we can derive from any quadratic equation in
one unknown, as , an equivalent equation of the type-form

ax®+ bx +¢=0. . @
Observe that in (4), ax® is the sum of all the terms in a7,

bz is the sum of all the terms in #, and c is the sum of all
the terms free from z.

E.g., from the quadratic equation
622 -3 5228 _28—10z
2 4 3
we derive the equivalent equation
1722+ 40z — 9 =0, )
which is in the type-form.
Comparing (1) with (A4) we have
a=17, b=+40, c=—-9.

If a =0, (4) ceases to be a quadratic equation; hence in
what follows we shall assume that a is not zero.

If neither b nor c is zero, (4) is called a complete quad-
ratic equation.

If either b or ¢ is zero, or if both are zero, (4) is called
an incomplete quadratic equation. When b = 0, the incom-
plete equation is often called a pure or binomial quadratic
equation.

E.g., equation (1) is a complete quadratic equation; while

822 4+42=0,82 +9=0, and 522 =0 are incomplete, the last two
being pure. :

278

’
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Ex. 1. In examples 20-30 of exercise 105 reduce each equation to
an equivalent equation of the type-form (4), and state the values
of a, b, and ¢ in each.

Ex. 2. Solve the incomplete quadratic equation

ax? + bx = 0. 1)

Factor z(ax + b)=0. : (2)

Equation (2) is equivalent to the two linear equations,

=0, ax+b=0.
Hence the roots of (2) or (1) are 0 and — b/a.

Remember that to solve any quadratic or higher equation we must
first find its equivalent linear equations. Reread §§ 148 and 149.

288. Since u® + mu + (m/2)} = (u + m/2) §137

The expression u®+ mu is made a perfect square by adding
(m/2)% or the square of one-half the coefficient of u.

The addition of (m/2)? is called completing the square.

E.g., 22 — Tz is made a perfect square by adding (— 7/2)% or
(7/2)%;
that is, 22 —Tx+49/4=(x—T/2)2

42% + 82, or (2x)% + 4(2x), is made a perfect square by adding
(4/2)%, or 4;
that is, Cx)?+4QC2)+4=2x+2)2

289. Any quadratic equation can be solved by transposing
all its termns to one member, factoring that member by
writing it as the difference of two squares, and then putting
each factor equal to zero.

The following examples will illustrate the method.

Ex. 1. Solve the pure quadratic equation

ar’+c¢=0. (1)
Divide by a, 22—(—c/a)=0. (2)
Factor, (x—-V—=cfa)(x+V—=c/a)=0.

By § 149, z=V—c/a, x=—V—-c/a.
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Writing these two linear equations together, we have

z=+V—-c/a. )
Ex. 2. Solve the complete quadratic equation
24+42—-2=0. (¢))
Add 4 -4, 2»+42+4—-6=0;
or ‘ (z +2)2 - (V6)2=0. @
Factor, (+2-V8)(x+2+V6)=0.
By § 149, z4+2=V6, z+2=—Ve.
Writing these two linear equations together, we have
z+2=4V6. ®)
Sx=—24V6.

Observe that in each example the two linear equations in (3) can
be obtained from (2) by transposing the known term and then
extracting the square root of both members, writing the double sign +
with one member. The principle of equivalence of equations which
this illustrates is proved in the next article.

290. Square root. If the square root of both members of an
equation is extracted, and the double sign + s written before
one member, the two derived equations (when rational in the
unknown) will together be equivalent to the given equation.

Proof. Let the given equation be

A= B}, @
where A and B are rational in the unknown.
Transpose, A*—B*=0.
Factor, (4A—B)(A+B)=0. 2)

By §§ 149 and 106, (2) is equivalent to the two equations
A=+ B ®)
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Equations (3) can be obtained from (1) by extracting the
square root of both members and writing the double sign +
with the second member; hence the theorem.

The following examples illustrate how this principle,
which is proved by factoring, abbreviates the work of
finding the two linear equations, which are equivalent to
a given quadratic equation.

Ex. 1. Solve 22482 -102=0. (O]
Transpose 32, 22 — 10z = — 32. .
Add (10/2)3, 22 —102+26=26-82=—-17.
Extract square root, z2—6=+V—-T1.
Cnz=bxV-T. ()

By §§ 106 and 290, no root is either introduced or lost in passing
from (1) to (2); hence the roots of (1) are 6 + Vv —7 and 6—V — 7.

Ex. 2. Solve 249_o1+1 ‘ 1))
4 b

Multiply by 20, Ba? 4+ 46 =422 4 4.

Transpose, 22 =—41.

Extract square root, z=4+V—4l. : @)

By §§ 106, 108, and 200, no root is either introduced or lost in
passing from (1) to (2); hence the roots of (1) are +Vv— 41 and
-V -4l '

Ex. 3. Solve 228 =Tx + 11
Transpose 7 x, 222 — T2 =11

Multiply by 2, (2z)2—-7(22) =22.

Complete square, (22)2—7(2x)+ 49/4 =22 + 49/4=137/4.
Extract square root, 2% —T7/2=41387/2.

s 2 =(T £+187) /4.

Hence, to solve a quadratic equation we can proceed as
follows:
Reduce the equation to the form a2’ + bz =—c.
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If the term in 2® is not a perfect square, multiply (or
divide) both members by a number which will make it a
perfect square.

Add to both members what is necessary to complete the
square of the unknown member.

Extract the square root of each member, writing the
double sign + before the known member.

Solve the two derived linear equations.

Exercise 104.

Solve each of the following equations:

® P TR

2?4+1=4z.
?—-2z=4.

4+ 5=8=
?+2x=2.
?+62x=—3.
44 42=11.
92+ 62=17.
42— 42 —-T7=0.

9.
10.
11.
12.
13.
14.
15.
16.

32 —6242=0.
52— 6x+4+11=0.
3 +4x+7=0.
22— 62+10=0.
52248x+4+21=0.
202 —524+15=0.
20— 3axr+2a:=0.
(z—T) =49 (v +2)".

When both members are perfect squares in the unknown, as in
example 16 (or can be made so, as in some of. the examples which
follow), the first step is to extract the square root of both members.

17
18
19

" 20.

. (@+2)2=4(z—1)> 21.
. (#+6)?=16(x—6)% 22.
. (+8)?=94 23.

P?—3ar+2a*=0. 24,

2?4 2 ax = b* + 2 ab.
2?4+ 2ab=0'+2ax.
40 +4ax=0"—d
?+3a’=4ax.

291, To solve the general quadratic equation,

ax*+bx+¢=0, 4
we proceed just as with the particular equations above.
Transpose c, ar? + b= —c.
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Multiply by 4a instead of a, to avoid fractions in (1)

d (2),
and @) (2az)* +2b (2 az) = —4 ac.

Add ¥, (2ax)*+2b(2a2)+b'=0b*—4ac. (¢H)]
Extract square root, 2ar+b=+Vd’'—4ac. 2)
Hence, x=(—b+Vbt—4ac)/2 a) (B)

By §§ 106, 108, and 290, no root is either introduced or
lost in passing from (4) to (B); hence the roots of (4) are
given in (B).

Let b’ and ¢’ denote the values of b and ¢ when a =1.

Then when a =1, equations (4) and (B) become

x4+ b6x+c¢'=0, "
and x=—b'/2 £+ V({27 ¢ (B)

By § 287, any quadratic equation can be reduced to an
equivalent equation of the form (A); hence, a gquadratic
equation in one unknown has two, and only two, roots.

292. Solution by formula. Instead of repeating the pro-
cess in § 291 with every quadratic equation, we should here-
after find the values of a, b, and ¢ when the equation is
reduced to the type-form (A), and substitute these values in
the two equations (B),

z=(—bxV¥®—4ac)/2a). (B)

Ex. 1. Solve 222 —32+4+6=0.

Here a =2, b=—-3, ¢c=6.

Substituting these values in equations (B), we obtain

z=(3+V9—40)/4=8+V-31)/4

Ex. 2. Solve —322=3k — 2 az.

Here ¢ =-38, b=2a, c=—38%.

Substituting these values in equations (B), we obtain

z=(—2a+Via®—-386k)/(—6)
=(a FVa*—9k)/3.
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293. Equations (B') of § 291 afford the following simple
rule for writing out the two roots of an equation in the form
2+ bz4c' =0.

The two roots are equal to minus one-half the coefficient of x
plus and minus the square root of the binomial, the square of
one-half the coefficient of x minus the known term.

Ex. 3. Solve 22 4 4z 4 7 = 0, by the rule given above.

r2=—24+VR-T7=-24V-8
Ex. 4. Solve 23 —6x -8 =0,
2=8+V(-38)2—(-8)=38+ I

Exercise 106.

Solve each of the following equations by § 293:

1. 2—2z=1. : 7. #¥4+31=10z.

2. #+8z4+5=0. 8. #»4+6x+11=0.
3. P?+4x=1. - 9. 2+10x432=0.
4. #*+18=10z. 10. #?+52=14=.

5. ©»+3=2=. 11. 2?4 2z=1.

6. ?*+11=4z. 12. *=4x2—18.

Solve each of the following equations by § 292:

13. 322+ 121 =44 2. 19. 21 +2=22"%
14. 25z=62"+21. 20. 92’ —143=6x.
15. 8a?+ x=230. 21. 12'=29z—14.
16. 32+ 35=22ux. 22. 20*=12 —=.
17. z+22=62a% 23. 1522 —2ax=ad’

18. 16=1Txz 442 24. 21°=2ax+3a%
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Solve each of the following equations by the method best
suited to it:

256. 92 —6ax=a’—0" 26. a(a’+1)=2x(a®+1).
27. a(@®—1)+z(a*—1)=0.
28. @ —2(a—b)x+b'=2ab.
29. O—c)F+(c—a)z=>b—a.
30. (a+bd)F+cx=a+b+ec.
31. aba®— (a®+b5)x+ab=0.
32. (a’—b%) (e —1)=4abda.
33. (B*—a®)(@®*+1)=2(a’+ ).
34, (a—2)}*+ (x—b)P=(a—0)"
3. x—a+2bPF— (x—2a+b)P=(a+Dd)
204, Discussion of the roots, (— b +Vb" —4ac)/(2a),
when a, b, ¢ are real.
(i) If b®*— 4 ac > 0, the two roots will be real and unequal.

(ii) If »* — 4 ac = 0, the two roots will be real and equal.

(iii) If b*—4ac< 0, the two roots will be ¢maginary or
complex.

(iv) If b=0, the two roots will be both real or both imagi-
nary, but opposite in quality and arithmetically equal.

(v) If ¢=0, one root will be zero and the other —b/a.

(vi) If b=c=0, both roots will be zero.

(vii) Both roots will be real, both imaginary, or both
complex. '

(viii) If b®*—4ac is a perfect square, the two roots will
be rational when a and b are rational.

The pupil should give the reasons for each of the above
statements.
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Ex. 1. What kind of numbers are the roots of the equation
22— 22=—T°? )
Here a =38, 0=—2,¢=17;
b —4ac=(—2)2-4.8.7<0.
Hence the roots of (1) are complex and unequal.

206. Sum and product of roots of x4 b'x +¢'=0. an
Representing the two roots of (4') by «, and ;, we have

o =—b/2+V('/2)"—¢, ®
n=—"b'/2—V{¥'/2) ~c. @
Adding (1) and (2) to find the sum, we obtain
o+ 2= b @®)
Multiplying (1) by (2) to find the product, we obtain
7 ay= (=2 —[(0/2) —c)=c. @
Hence, if a quadratic equation is in the form
2+br+c =0, “an

the sum of its roots s equal to minus the coefficient of x, and
the product of its roots is equal to the known term.
E.g., the equation 322 = 7z + 5 put in the form of (A4') becomes
2—-jrx—§=0.
Hence the sum of the roots is 7/3, and the product is — 5/3.

Note that this principle agrees with § 139 in factoring, and that it
is in reality only another form of stating the principle in that article.

Exercise 106.

1. By § 294, what kind of numbers are the roots of each
of the equations from & to 14 in exercise 104 ?

2. By § 295, what is the sum and what the product of
the roots of each of the equations from 7 to 18 in exercise
105°? :
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Solve each of the following fractional equations:

5247 T 4

3. x—l =3w+2. 11. x—_:§+w—+-—1=3.
5z—1_3z 1 1 1
4. 2T, o =
241 2 2 2 t3rzT 232
5 3m—8=5w—2 18 5 10 — 2
Cx—2 z+5 " xz4+1 2+10 32—3
50—7_  =x—5 1 4 1
8 Te—6 2s—13 W 3 T 0 2a
4 5 3 1 1 _ 6
——— = 15. = —
4 z—1 z4+2 = 5 1 T 3—=z 35
5 4 3 r+4 -2
b T2 2 z+6 16. w—4 —3~ 6k
r r—1 13 r— 1 z4+1
) -1_13, ) 2 :
® m—1+ z 6 17 3w+1 z—1 =5
z+4+1 x2+2 29 1 1 1
10, =2 < -
O a2t zri- 10 18 st ersterii-
19. 3 + 4 _ 15

e—1"2—-3 2+3

22—3_2x—5, 52—16
e T T |
2¢—-2  3—-3x_ &
22—3 32—2 8x—12
Sx 6 19
22. z—3 w+2+3——w_
2w—1+13 3a:+5
2241 11 3a— 5
3z 4 4

M o2 wrsti—a

21.

23.
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2—1 241_ 5=
. %'z+1+m—1—@—1

26 ———————=_—"2.

27.

28. + =

1 + Tz _ b
32—6 T2@+2) »—4
1 3 1

0 S i sz 1 3+

] z4+1_2—-2, 2—1
x+1+w+2—x—1+ z

1 1 — 1 1
z z+4 41 242
z x—3 z - x43

r—3 x +w+3 z

29.

31.

34, z+-=a+4- 38. §+

3. % 4+ % _4 39.

36. . 40.

37.

a1 1 1.1
z a b

o 1 1 _ 1 1

e+a z+b c+a c+b
x =z ¢ c .

3. =
m+a+w+b c+a+c+b
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r4+a w+b=w—a z—0b
z—a 2—b0 x4+a x24+Db

a + b __a—c¢ b+c
z+a z4+b z24+a—c xz+b+c

1 1
46. = T

44.

45.

x+a+;$—a -6t ——

4y, O +0 at+c_2(@+b+c)
: z4+b x+c z4+b4c

296. The following examples illustrate how any quadratic
expression can be factored by writing it as the difference of
two squares.

Ex. 1. 2?+4+4zx+4+9=22+424+4-(-05)
=(x+2)2—(V-15)2
=@+2+V-5)(z+2-V—0b).

Ex. 2. 82242z —44=[(82)2+2(8z)— 4]+ 38
=[(Bz+1)2—-45]+3
=@B2+14+8vV6)(Bx+1-8V6)+8
=(@+31+V6)(@Bz+1-3Va).

Exercise 107.

Factor each of the quadratic expressions:

1. 2?4624 7. : 7. o 4102 4 40.
2. ©*4+8x+5. 8. 2 —8x+432.
3. 2*—10x 4 31. 9. ¥—3jz—4%
4., 92> — 62— 26. 10. 2*+3z—3.
5. 32?4+ 6x—3. 11. ' — 4+ 5.
8. @’ — 14z 4 52. 12. 32 —8z47.
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13. Put each of the twelve foregoing trinomials equal to
0, and determine, (1) the sumn and the product of the roots
of each resulting equation, (2) the character of the roots
as real, imaginary, or complex.

Factor each of the following expressions and then find
the roots of the equation formed by putting it equal to 0:

14. 2 — 42416 17. 42 + 824 10.

16. 22— 624 11. 18. 92°+ 182 4 18.

16. 2 — 8a: 4 20. 19. 162° 432z + 27.



CHAPTER XX
PROBLEMS

297. The solving of a problem by equations consists of
three distinet parts:

(i) The statement of the conditions of the problem by one
or more equations,

(ii) The solving of these equations.

(iii) The discussion. A problem may require for an
answer a whole number, an arithmetic number, a real num-
ber, or numbers having some relation that is not expressed
by the equations.

To state these and other such conditions of a problem,
and to determine what solutions of the equations give
answers to the problem, is called the discussion of the
problem.

Prob. 1. Eleven times the number of persons in a room is equal to
twice the square of that number increased by 12. How many persons
are in the room ?

Statement. Let 2 = the number of persons ;
then 11z =22+ 12. ¢))
Solving (1), we obtain z =4, x=8/2. 2

Equations (2) are together equivalent to (1).

Discussion. The number of persons must be an arithmetic whole
number which satisfles one of the equations in (2); but 4 is the only
such number. Hence the one, and only, answer is 4 persons.

291
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Prob. 2. A train travels 300 miles at a uniform rate; if the rate
had been 6 miles an hour more, the journey would have taken 2 hours
less. Find the rate of the train.

Statement. Let z = the number of miles travelled per hour;
then 800 + = = the number of hours required for the journey,

and 800 + (z + 6) = the number of hours the journey would have
taken if the rate had been increased 5 miles

an hour,
Hence, by the conditions of the problem, we have
800 _ 300 i
—_—= 2. 1
z x+6 + : M
Solving (1), we obtain z = 25, z =— 30. @)

Discussion. The number of miles per hour must be an arithmetic
number which satisfies one of the equations in (2) ; but 25 is the only
such number. Hence the one and only answer is 25 miles an hour.

Prob. 3. The square of the number of dollars a man is worth exceeds
by 800 twenty times that number. How much is the man worth ?
Statement. Let z = the number of dollars the man is worth ;
then 22 =20z + 800. 1)
Solving (1), we obtain z = 30, z =— 10.

Discussion. If a debt is regarded as a negative possession, both of
these roots give answers ; that is, the man either has $ 30 or owes $ 10.

Prob. 4. The sum of the ages of a father and son is 100 years ; and
one-tenth of the product of their ages, in years, exceeds the father's
age by 180. How old is each ?

Statement. Let x = the number of years in the father’s age ;

then 100 — z = the number of years in the son’s age.
Hence 0.12(100 — z) =2 + 180. (1)
Solving (1), we obtain z = 60, and 100 — 2 = 40,

or z = 80, and 100 — =z = 70.

Discussion. The father must be older than the son; hence the
father must be 60, and the son 40, years old.

Both of the solutions of (1) would give answers if the problem read
as follows : The sum of the ages of two persons is 100 years; and one-
tenth of the product of their ages, in years, exceeds the age of one of
them by 180. How old is each ?
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Prob. 6. Find a real number whose square increaged by 13 is equal
to 4 times the number.

Statement. Let 2 = the number ;
then 23+ 13 =4z (¢))]
Solving (1), we obtain z =248V —1. 2)

Discussion. Since there is no real number which satisfies (2), the
problem is impossible.

If the word ¢‘real” were omitted in the problem, both the values
of 2 in (2) would be answers.

Prob. 6. A cistern can be filled by two pipes running together in
22} minutes ; the larger pipe alone would fill the cistern in 24 minutes
less than the smaller one. Find in what time each would fill it.

Statement. Suppose the larger pipe to fill the cistern in z minutes ;
then the smaller pipe will fill it in # + 24 minutes. Also, 1/2 and
1/(x + 24) are the portions of the cistern which each pipe will fill in
one minute, and 1/22% is the portion that both together will fill in one
minute.

1 1 1
H = = 1
ence z+x+24 22} @
Solving (1), we obtain x =386, x =-1b. 2)

Discussion. The answer must be an arithmetic number, but 36 is
the only such number which will satisfy either equation in (2).
. Hence the larger pipe would fill the cistern in 36 minutes, and the
smaller one in 36 + 24, or 60, minutes.

Exercise 108.

1. Find two arithmetic numbers one of which is 4 times
the other, and whose product is 196.

2. Find two arithmetic numbers whose sum is 25, and
whose product is 144.

8. Find two numbers whose sum is 15, and whose pro-
duct is — 250,

"4;. Divide.T1" mto two parts the sum of the squales of
which is 2561. N . : , !
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6. A rectangular court is 5 yards longer than it is
broad; its area is 1886 square yards. Find its length
and breadth.

8. The sum of the squares of two consecutive whole
numbers is 1013. Find the numbers.

7. The sum of the reciprocals of two consecutive whole
numbers is $§. Find the numbers.

8. If a train travelled 5 miles an hour faster, it would
take 1 hour less to travel 210 miles. Find the rate of the
train.

9. The perimeter of a rectangular field is 500 yards, and
its area is 14,400 square yards. Find the length of the
sides.

10. The perimeter of one square exceeds that of another
by 100 feet; and the area of the larger square exceeds 3
times the area of the smaller by 325 square feet. Find the
length of their sides.

11. A lawn 50 feet long and 34 feet broad has a path of
uniform width round it; the area of the path is 540 square
feet. Find its width.

12. A man travels 108 miles, and finds that he could
have made the journey in 4} hours less had he travelled 2
miles an hour faster. At what rate did he travel ?

13. The product of the sum and difference of an arith-
metic number and its reciprocal is 33. Find the number.

14. A cistern can be filled by 2 pipes in 33} minutes.
To fill the cistern, the larger pipe takes 15 minutes less
than the smaller. Find in what time it will be filled by
each pipe singly.

15. A hall can be paved with 200 square tiles of a certain
size; if each tile were one inch longer each way, it would
take 128 tiles. Find the size of the tile.
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18. There are two square buildings paved with stones
each a foot square. The side of one building exceeds that
of the other by 12 feet, and the two pavements together
contain 2120 stones. Find the sides of the buildings.

17. Find the number such that the product of the num-
bers obtained by adding to it 3 and 5 respectively is less by
1 than the square of its double.

18. The plate of a mirror is 18 inches by 12, and it is
to be framed with a frame of uniform width, whose area is
to be equal to that of the glass. Find the width of the
frame.

19. A and B dfstribute $ 100 each in charity; A relieves
5 persons more than B, and B gives to each $ 1 more than
A. How many did they each relieve ?

20. The difference between the hypotenuse and two sides
of a right-angled triangle is 3 and 6 respectively. Find the
sides.

21. In the centre of a square garden is a square lawn;
outside this is a gravel walk 4 feet wide, and then a flower
border 6 feet wide. If the flower border and lawn together
contain 721 square feet, find the area of the lawn.

- 22. What is the property of a person whose income is
$ 2150, when he has % of it invested at 4 per cent, } at 3
per cent, and the remainder at 2 per cent ?

23. A person bought a certain number of oxen for $ 1200,
and, after losing 3, sold the rest for $ 20 a head more than
they cost him, thus gaining $ 35 by the bargain. How
many oxen did he buy ?

24. A can do a piece of work in 10 days; but after he
has been upon it 4 days, B is sent to help him, and they
finish it together in 2 days. In what time would B have
done the whole work ?
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25. A and B can reap a field together in 7 days, which A
alone could reap in 10 days. In what time could B alone
reap it ?

26. A can build a wall in 8 days, which A and B can do
together in 5 days. How long would B take to do it alone?

27. A does § of a piece of work in 10 days, when B
comes to help him, and they take 3 days more to finish it.
How long would B take to do it alone ?

28. The tens’ digit of a certain number exceeds the units’
digit by 4, and when the number is divided by-the sum of
the digits, the quotient is 7. Find the number.

29. Find a number of three digits, each greater by 1 than
that which follows it, so that its excess above } of the num-
ber formed by inverting the digits shall be 36 times the
sum of the digits.

30. A detachment from an army was marching in regular
column, with 5 men more in depth than in front; but on
the enemy coming in sight, the front was increased by 845
men, and the whole was thus drawn up in 5 lines. Find
the number of men.

31. The sum of two numbers is 14, and the quotient of

the less divided by the greater is % of the quotient of the
greater divided by the less.

32. TFind two fractions whose sum is §, and whose differ-
ence is equal to their product.

33. Two men start at the same time to meet each other
from towns which are 25 miles apart. One takes 18 minutes
longer than the other to walk a mile, and they meet in 5
hours. How fast does each walk ?

Let ¢ = the number of minutes it takes the first man to walk a mile.

84. A and B together can do a piece of work in a certain
time. If they each did one-half of the work separately, A
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would have to work one day less, ard B 2 days =rre tZaz
before. Find the time in which A azd B v.genier <o tie
work.

35. A man bought a certain nuzber of ralway slares
for $1875; he sold all but 15 of tiem for $174), zuising
$4 per share on their cost price. Huw azy tlares .9
he buy ?

36. The denominator of a fractiom ex 2rris the 1 neratin
by 4; and if 5 is taken from each, sie s.:2 of 2he rorlpronal
of the new fraction and 4 times e oriz i fraction is 5,
Find the original fraction.

37. A person swimming in a streaz w2k rns 14 anlles
per hour finds that it takes Lima 4 t.:ues as Jong o aw.m a
mile up the stream as it does to awiza the same divtance
down. At what rate does he sl ?

38. What is the property of a pervm whone income is
$ 1140, when one-twelfth of it is invested at 2 per cent,
one-half at 3 per cent, one-third at 4} per eent, and the
remainder pays him no dividend ?

39. A person having 7 n.iles to walk increases his speed
one mile an hour after the first mile, and is half an hour
less on the road than he would have been had he not altered
his rate. How long did it take to walk the 7 miles ?

Let z miles an hour be his rate at first,

40. The diagonal and the longer gide of a rectangle are
together 5 times the shorter side, and the longer side exceeds
the shorter by 35 yards. Find the area of the rectangle.

41. The price of photographs is raised 50 cents per
dozen ; and, in consequence, 4 less than before are sold for
$5. Find the original price.

42. A boat’s crew can row 8 miles an hour in still water.
What is the speed of a river’s current if it takes them 3
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hours and 40 minutes to row 8 miles up and 8 miles down
the river ?

Let 2 = the number of miles the current runs in an hour;
8 8 _8

then

8+z+8—z_8

43. At a concert $ 300 was received for reserved seats,
and the same amount for unreserved seats. A reserved seat
cost 75 cents more than an unreserved seat, but 360 more
tickets were sold for unreserved than for reserved seats.
How many tickets were sold all together ?

44. Out of a cask containing 60 gallons of alcohol a
certain quantity is drawn off and replaced by water. Of
the mixture a second quantity, 14 gallons more than the
first, is drawn off and replaced by water. The cask then
contains as much water as alcohol. How much was drawn
off the first time ?

Let z = the number of gallons drawn off the first time ; then, in

the first mixture,
60 — & = the number of gallons of alcohol,

and % = the number of gallons of water.

60 —x x
—z—-14)== —z—14 14,
0 (60 —z — 14) 60(.60 z )+ +

45. A cyclist rode 180 miles at a uniform rate. If he
had ridden 3 miles an hour slower than he did, it would
have taken him 3 hours longer. How many miles an hour
did he ride ?

46. A man drives to a certain place at the rate of 8 miles
an hour. Returning by a road 3 miles longer at the rate of
9 miles an hour, he takes 7} minutes longer than in going.
How long is each road ?

47. A father’s age is equal to the united ages of his
5 children, and 5 years ago his age was double their united
ages. How old is the father ?
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48. A and B are two stations 300 miles apart. Two
trains start simultaneously from 4 and B, each to the oppo-
site station. The train from A reaches B 9 hours, the train
from B reaches A 4 hours, after they met. When did they
meet, and what was the rate of each train ?

49. If a carriage wheel 14} feet in circumference takes
one second more to revolve, the rate of the carriage per hour
will be 2% miles less. How fast is the carriage travelling ?

Let z = number of miles travelled per hour ; then
1,11
z 10 =x-—2%
50. The number of square inches in the surface of a

cubical block exceeds the number of inches in the sum of
its edges by 288. Find its edge and volume.

51. A cistern can be filled by 2 pipes running together
in 2 hours 55 minutes. The larger pipe by itself will fill it
sooner than the smaller one by 2 hours. Find the time in
which each pipe separately will fill it.

52. My gross income is $ 3000. After paying the income
tax, and then deducting from the remainder a percentage
less by 1 than that of the income tax, the income is reduced
to $ 2736. Find the rate per cent of the income tax.

53. A set out from C toward D at the rate of 5 miles
an hour. After he had gome 45 miles, B set out from D
toward C, and went every hour 4 of the entire distance.
After travelling as many hours as he went miles in an hour,
he met A. Find the distance from C to D.



CHAPTER XXI
IRRATIONAL EQUATIONS

298. An irrational equation is an equation one or both of
whose members is irrational in an unknown.

In this chapter, as heretofore, the radical sign will denote
only the principal root of a number or expression.

E.g., Va2 —2 =12 — 7 is an irrational equation, and vz2 — 2 de-

- notes only the principal square root. Note that we cannot speak of

the degree of this or any other irrational equation.

In solving irrational equations we use the following
principle :

299. If both members of an irrational equation are raised
to the same integral power, the derived equation will have all
the roots of the given one and often others in addition.

Proof. Let A=B @
be the given irrational equation.
Squaring, A*= B €9)
By §§ 105 and 106, (2) is equivalent to the equation
(4—B)(4+B)=0. ®)

By § T4, the roots of (3) include those of 4 —B=0, or
(1) ; hence no root is lost by squaring (1).

But the roots of (3) include also those of 4 4+ B=0, or
A =— B; hence any root of 4 =— B which is not a root
of A = B must be introduced by squaring (1).

In like manner the principle can be proved for any other

positive integral power.
300
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Ex. 1. Solve the equation 2z —6=-—Vz-6. (1)
Square, »—-122+36=2-6. (2)
Transpose, 22— 132z + 42 =0.

Factor, (z —6)(z —T)=0. @®)

Now (8), or (2), is satisfled when z = 6 and 2 = 7 ; but (1) issatisfied
only when z =6. Hence by squaring (1) the root 7 was introduced.
By § 209, the roots of (2) include those of (1) and also those of

=—B,orz—6=VvVz—6. (4)

Equation (4) is satisfled both when 2 = 6 and when z = 1.

Hence if it had been required to solve (4), by squaring we would
have obtained (2), and no root would have been introduced.

Notice that we cannot say that (2) is equivalent to (1) and (4)
jointly (as would be the case, by § 290, were (1) and (4) rational
equations); for (2) has only two roots, while (1) and (4) together have
three roots, 6 being a root of each.

Observe that, since we cannot speak of the degree of an irrational
equation, we do not know how many roots it has until we have solved it.

Ex. 2. Solve 2—V2z+8+2Vz+5=0. (¢))

Our purpose being to obtain a rational equation, it is better before
squaring to put the more complex surd in one member by itself, as
below.

Transpose, 24+2Ve+6=V22+8.

Square, 4+8Ve+56+42+20=2z+8.

Transpose, 2+ 8=—4VZz + b. @
Square, 22+ 16z + 64 = 16 z + 80.

Transpose, 22—-16 = 0. 3)

Hence, by § 299, if (1) has any root, it is 4 or — 4. But neither
2z =4 nor x = — 4 satisfies (1) ; hence (1) has no root, i.e., it is impos-
sible, and therefore both roots of (8) were introduced by squaring (1)
and (2). ’

If we use both the positive and the negative values of V2 z 4 8 and
Vz + b, we obtain in addition to (1) the three equations,

2-V22+8-2Vx+6=0, 4)
2+V22+8-2Vzx+56=0, ()

24+V2x+8+2Vx+6=0. o)



CHAPTER XXI
IRRATIONAL EQUATIONS

298, An irrational equation is an equation one or both o
whose members is irrational in an unknown.
In this chapter, as heretofore, the radical sign will denot
only the principal root of a number or expression.
E.g., V& —2=z — 17 is an irrational equation, and Va?—2 ¢
- notes only the principal square root. Note that we cannot speak
the degree of this or any other irrational equation.

In solving irrational equations we use the followi
principle :

209, If both members of an irrational equation are ra
to the same integral power, the derived equation will have
the roots of the given one and often others in addition.

Proof. Let A=B
be the given irrational equation.
Squaring, A=B.
By §§ 105 and 106, (2) is equivalent to the equation
(A—B)(4+B)=0.

By § 74, the roots of (3) include those of 4 —B=
(1) ; hence no root is lost by squaring (1).

But the roots of (3) include also those of 4+ B=
A =— Bj; hence any root of 4 =— B which is not :
of 4 = B must be introduced by squaring (1).

In like manner the principle can be proved for any .

positive integral power.
300
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22. Vo +5+/z=10+ /2.

23. \Vz—Vz—8=2+Vz—8.
24. Vitz+Ve=2+Vita
2. 2\/z—Viz—3=1+Viz—3.
26, Vr—T=1+({/x+7).

27. L?_l__3+i“i
Vo1

Simplify the first member in example 27,
98. —22=8 _ovz—3_
Ve—2+1
V2+z2z+V2—2a
VZtz—V2—2a

1 1 1
%0. 1—w+\/:c+1+\/w-—1

29, 2=

In the next seven examples, first rteduce the improper fractions to
mixed expl‘essnons

31. \/m+3 3\/x—4&
VE—2 6Vw—13
9z —23 _6~x—17
3yz—8 2./2—6
33. 2 \/w+3 \/ac+9
) VEet+2 4T
34. M;’Z_5=:ﬁ__26.
ve—1 Ve —21
35, 2/ —1_ /22 37. 12\/w—11=f$3/w+5
2\/w+§ \/w——{; 4yx—43 2\/w+%

6yz—21_8yx—11 CE _10.
36. 3yr—14 4y/w—13' 88 Ve \/

32.
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39. a—2)+~/(b—2)=+(a+bd—-22
40. /(ax + b*) —/(bz + a*) =a — b.

41, /(a+2)+/(b+2)=~/(a+ b+ 22).
42, /(a—2)+/(b—2)=~/(2a+72D).

300. Equations in quadratic form. If an equation has only
two unknown terms, and if the unknown factor of one of
these terms is the square of.the unknown factor of the
other, the equation is in quadratic form.

E.g., since 23 4 8z is the square of V2 + 3z, the equation
(23 + 8z)+ 6Vx? + 8« =T i8 in quadratic form.

The following examples illustrate how the principles of
quadratic equations can be applied to irrational equations
which are, or can be put, in quadratic form.

Ex. 1. Solve 222 4+ 32z —5Vv22% 4+ 32+9=-38. (¢))
Add 9, (222 +32+9)—6v2x3+3x+9=86. 2)

Since 2 x? + 8z + 9 is the square of V22 + 32 + 9, equation (2)
is in quadratic form. Transposing 6 and factoring, we have

(V222 +82+9-6)(V222+ 32+ 9+1)=0. @3)

The roots of (8) include the roots of
V22 +3z+9=8, @
and of V2Zal +3z+9=-1, )

but no others.

The roots of (4) are 3 and — 44 ; while (6) is an impossible equa-
tion, since a principal square root cannot be a negative number.

What would be the roots of (1), if the sign before the radical
were + ?

Ex. 2. Solve 822 —7-+8V822 — 162 + 21 =162, Q)
Transposing 16 z and adding 28 — 28, we obtain
(828 — 162+ 21)+ 8V3A —16x + 21 =28 =0, [6))
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Factor, (V322 —16z + 21 —4) (V32— 162 +21+7)=0. (8)
The roots of {3) include the roots of

V3t — 16z + 21 =4, ')
and of V8uxt—16x+21=-1, : b)

but no others.
The roots of (4) are 6 and 1/3, and (6) is impossible.

What would be the roots of (1), if the sign before the radical
were — ?

If we could not factor (2) by inspection, by § 203 we would have
V82 —162+21=—4+VE+28=+4 or —7.

Exercise 110.

Solve each of the following irrational equations:
1. 32 —4z+V322—4x—6=
2. —ac+4+Vr—z+d=2
3. @+ 2z —Vo*+ 22— 6=12.

10
4. 143V + 24+ 5=—--"T"-——
s vVE+ax+5

5. 2 +Via+24x=24—62.

6. 22 4+6x=1—Vef+ 32+ 1.

7. 222-3)(x—4) —V2F@ - 11z +15=
8. \/m— 122* 4 62 — 119.

9. 22 -22—17T42V22* -3+ T=
10. 32(8 —x) =11 —4Va* -3z 4 5.

11. 288 —4a—VP2 -2z —-3=



CHAPTER XXII
HIGHER EQUATIONS

301. The following examples illustrate how the princi-
ples of quadratic equations are applied to higher equations
which are, or can be put, in quadratic form.
~ Ex. 1. Solve (2?+2xP—6(2*+22)—14=0. (¢))

Factor, (@ +2z—-T)(@*+22+2)=0. 2)

Equation (2) is equivalent to the two equations

224+22—-7=0, 224+22+4+2=0,"

each of which is readily solved.

Ex. 8. Solve st — 828+ 102 + 242 + 5 =0, ' o)
Adding 6 2% — 6 22 to the first member, we have
(zt — 828+ 1622) — 622+ 2424+ 5=0,
or (22 -42x)32—-6(2?—42)+56=0. @)
Factor, (@2 —42—6)(x2—42x—-1)=0. 3)
Equation (3) is equivalent to the two equations
2?»—4z—-6=0, 22—-4x—-1=0,

whose roots are 6, — 1, 2 + V5.

2 -1_17
Ex. 8. Solve -2 42— _10
x. 3 ovez_1+ o 2 (1)
Here the second term is the reciprocal of the first.
Putting y for the first term, and therefore the reciprocal of y for
the second, (1) becomes

[

17
y+ 2

ge
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Multiply by 4y, 42 —-1Ty+4=0.
Factor, y—-49HHy-1)=0.
soy=4,0rl/4
Hence (1) is equivalent to the two equations
2 2
zt =4 and x_i_i=% @)
The roots of equations (2) are 2, 2, (1 £ V— 16)/8.
Exercise 111.
Solve the following equations:
1. #*—5a2+4=0. 3. *—T2?—18=0.
2. 2#—10224+9=0. 4. (#-1)/9+1/r"=1

5. o +100/a* = 29.
6. (2 + x)? — 22(a* + x) =— 40.
7. (@ —2)?—8(a* —x) =—12.

8. (m+1)’+4(x+1>=12.
X X

9. 20+ 3x+1=230/(22*+32).
10. #+32—20/(a*+32)=8.

11. 2?4+ +1=42/(a* 4 ).

12. P85 —12a2 4+ 1122 =128.
13. #+225—327—42—96=0.
14. 2#—1024+30a?—252+4=0.
15. o*—142° +61a°—84x+20=0.
2 c+1
crit e

x +#+1=§
41 x 2

#42 _ dtdotl 5,
Ftrderl’  @+2 2

16. =2.

17.

18.
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302. A binomial equation is an equation of the form z* = a,
where n is a positive integer.

The binomial quadratic equation 2? = a has already been
solved. Certain binomial higher equations are readily solved
by previous principles.

Ex. 1. Solve the binomial cubic equation 2 — 1 =0. 1)

Factor, (-1 +2z+1)=0, @)

Equation (2) is equivalent to the two equations
2—1=0,22+2+4+1=0. 3

The solutions of equations (3) are 1 and (—1+V—38)/2.

Hence, the cubic equation (1) has one real and two complex
solutions.

Since by (1), 28 =+1, the cube of each solution of (1) is equal to
+1; that is, +1 has the three cube roots +1 (—1 +V—8)/2, and
(-1-v-=3)/2. Seeexample 32, exercise 103.

Since + 27 =(+4 1) x 27, the three cube roots of +27, or the three
solutions of the cubic equation #8 =+27, can be obtained by multiply-
ing the three cube roots of +1 by the cube root of the arithmetic num-
ber 27.

Thus the three solutions of #3 =+27 are +3 and 8(—1+V —38)/2.

Ex. 2. Solve the binomial biquadratic equation ¢ —1=0. (¢))
Factor, (@ —-1)(22+1)=0, 2)

The solutions of (2) are + 1and + V1.

Hence +1 has four fourth roots, two real and two imaginary.

The four solutions of x* = 81, or the four fourth roots of +81, are
+8and £+ 8V— 1.

Ex. 3. Solve =1, 0oraz5—-1=0. (¢))
Factor, —-—D@Et+x+23+2+1)=0. 2)
One solution of (2) is 1, and the other solutions are those of the

equation
w2t 4+23+24+1=0, 3

Divide by 27, B4+z+1+i+l=0
z 2
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Add1, - z’+2+%+x+i=1,

or (x+%)2+(x+;:)=l.
o z+£=—§:1:\/1—7+_1=—§i}\/5.
s 234+ 1=4(—1+/6)x. “4)

Solving the two equations in (4), we obtain four solutions, all of
which are complex. Hence 1, or any other positive number, has five
fifth roots, one real and four complex.

Ex. 4. Solve »=1orx*—1=0. (¢))
Factor, (@B -1 +1)=0,
or ) (-1)(22+2z+1)(z+1)(x2—x+1)=0, 2)

Equation (2) is equivalent to the four equations
z—1=0,2!+24+1=0,2+1=0, 22—2+1=0. (3)

Solving equations (3), we obtain six solutions, two real and four
complex.

Hence 1, or any other positive number, has six sixth roots, two real
and four complex.

Ex. 6. Solve =1, o0or28—-1=0. )
Factor, @+ 1)@+ 1) —1)=0. @

The roots of (2) are + 1, + Vv — 1, and the roots of

2 4+1=0. @®)
Add 222223, 2 422241—222=0. )
Factor, @ +1+2z2)(22+1—2,2)=0. (©))

Equation (4) is equivalent to the two equations
2+14+22=0,
and 2»4+1—-22=0,

each of which has two complex roots.
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Hence, any positive number has eight eighth roots, two real, two
imaginary, and four complex.

Observe that any root of + 1 or — 1 is a quality-unit.

‘ Exercise 113.

Solve each of the following binomial equations:

1. 241=0. 6. #+1=0. 9. 2*—64=0.

2. #4+27=0. 6. *+32=0. 10. 2*—625=0.

8. #+1=0. 7. #+1=0. 11. #*—243=0.

4. #4+16=0. 8. #*4+64=0. 12. #*—T729=0.



CHAPTER XXIII

SYSTEMS INVOLVING QUADRATIC AND HIGHER
EQUATIONS

303. As in linear systems, so in any other determinate
system there must be as mnany independent consistent equa-
tions as there are unknowns.

In solving systems which involve quadratic or higher
equations we have frequent use for the following principle
of equivalent systems:

304. If M, N, P, Q denote any integral unknown expres-
sions, then system (a)
Mx N=0, }

Px Q=0, (@)

18 equivalent to the four systems (b), (c), (&), ().

g TOR ) IR IO R 1O

Proof. Any solution of system () must reduce the factor
M or N (or both) to 0, and at the same time must reduce
Por @ (or both) to 0. '

Now any solution of system (a) which reduces M to 0
and P to 0 is a solution of system (); any solution of (a)
which reduces M to 0 and @ to 0 is a solution of (c); and
so on. Hence any solution of system (a) is a solution of
system (8), (¢), (d), or (¢).

Conversely, any solution of system (b) reduces M to 0 and

P to 0, and therefore reduces M % N to 0 and P x @ to 0;
311
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hence, any solution of system (b) is a solution of system
(a), and so on. Hence, any solution of system (b), (¢), (d),
or (¢) is a solution of system (a).

Whence system (a) is equivalent to the four systems (b),
(©); (@, (e)-

Ex. 1. Solve the system

, By —292=0, (1>}(a)
3y2—10y+8=0. ©))
By § 201, system (a) is equivalent to (b).
Factor (1), (z-2y)(+y)=0. ® } ®»
Factor (2), By—-Hy—2)=0. “4)

By § 304, (b) is equivalent to the four linear systems (c).

x—2y=0, z—-2y=0, z+y=0, z+y=0,} ©
By—4=0. y—2=0. 3y—4=0. y—-2=0.

The solutions of the four systems (c) are §, $; 4.2; — 4, 4; —2,2;
which are therefore the four solutions of (a).

Ex. 2. Solve the system

I Oe
System (a) is equivalent to system (b).
From (1), z4+y=+4. 3 } )
From (2), z(x—-2y)=0. “4)

By § 304, (b) is equivalent to the four linear systems (c).
z+y=4, zt+y=4, r+y=—4, z4+y=—4, ©
z=0. 2—2y=0. z2=0. x—2y=0.

In applying the principle of this article to system (b), observe that
the two equations in (3) are equivalent to the equation

@+y—-H@+y+4)=0.
The solutions of (a) are therefore 0, 4; §, $; 0, —4; — §, — .
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Whenever one or each of the equations of a system can
be resolved into two or more equivalent equations, the first

step in solving the system is to apply the

article.

principle of this

306. The two examples in § 304 illustrate the theorem :
A system of two quadratic equations in two unknowns has,
in general, four, and only four, solutions.

1. (w—2y)(w—1)=0,}
z+y—4=0.

2. (a:—3)(y—2)=0,}
c+y="T.

3. x’——4xy+3y’=0,}

4. :cy—-7y-l-3m=21,}
r+y=2

5. 42—y =0,

su

Exercise 113.

Solve each of the following systems of equations:

}

22—-3y=6.

6.

10.

®

(w+y)(w—z/+1)=0,}
(=+2)(y+3)=0.

(w+y)2=16’}
(@—y)=4
o4 22y + y? =144,

}

@ +ay=x+y, }
y¥—22y=3y—6u=.
w”“yg=w+3/’. }
@ —3xy=5x—15y.

306. A system of two equations, one linear and the other
quadratic, can be solved by first eliminating one unknown by

bstitution.

Ex. 1. Solve the system

Solve (1) for x,
From (2) and (3),
Factor,

x4+ 2y =5, (¢))
224+ 2y2=09. @) } @
r=5-—2y. 3

(5-29)2+242=09.
(By—4)(2y —4)=0.

} @)

O]
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By § 201, (a) is equivalent to the system, (3) and (4), or (b).
By § 304, (b) is equivalent to the two systems (c¢) and (d).

z=6—2m}
8y—4=0. )

y-—

z=56-—2y,
2=0. }(d)

The solution of (c) is 7/8, 4/3 ; and that of (d) is 1, 2.
After the theory is clearly understood, the work after equation (4)
can be abridged as below :

From (4),

y=4/8, or 2.

When y =4/8, from (3), 2 =6-8/3=17/3;

When y = 2, from (3),

r=56—-4=1.

This example illustrates the following theorem :

A system of one linear and one quadratic equation in two
unknowns has, in general, two, and only two, solutions.

Exercise 114.

Solve each of the following systems:

1.

v +y=15,
xy=36. }
w+y=51’}

xy = 518.
8x—4y=—12,
3m’+2y’—-y=48.}

z —y =10,
x’+y’=58.}
3w+3y=10,}
'.vy=1.
22—-5y=0, }
2 — 3y =13.
224+3y=0,

4224+ 9ay+9P="T2.

}

8.

z—y=3, }
?+19+ ¥ =3uxy.
20—-y=5,
x+3y=2wy.}

3z +2y=25,
w”—4a:y+5y’=2.}

. 3x’—2wy=15,}

224 3y=12.

. v+y=15 }

. w’+3my—y’=23,}

a:’+y’=185,}
r—y=3.
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16. 22— Ty =25, } 17. s +y=2, }
52+ 4 xy+4-3y*=23. 2y+3xz="06uxy.
16. 3x—31=5y, } 18. ¢4+ 2y=T, }
@+ bxy +25=1> 3y+6x=>axy.
19. 2 —y=1, }
2 — o = (5/6)ay.
20. o’ —2xy =0, (l)}(a)
4274+ 9y® = 225, )
Factor (1), x(x —29)=0. ®)

System, (2) and (8), which by § 201 is equivalent to (a), is equiva-
lent to the two systems (b) and (c).

423 + 992 = 225, 422 + 992 = 225,
_ }(b) _ }
z=0. z—2y=0.
21. 22—3zy=0, } 23. a:’—2:vy+5=0,}
5224+ 3y =48. (x—y)Y’=4.
22. 2:c2—3:cy=0,} 24. x’+4y’=4xy+16,}
¥+ 5xy=34. 2?4 y*=35.

307, If each of two quadratic equations has one, and only
one, term below the 2d degree, and these two terms are similar;
the system can be solved by first eliminating the term below
the second degree by addition or subtraction.

Ex. 1. Solve the system 22 + xy + 2 y2 = 44, (¢))
222 —zy + y?=16. @) @
Each equation in system (@) has one, and only one, term below

the 2d degree, 44 and 16, respectively ; and these terms are similar.
We proceed to eliminate the term below the 2d degree.

Multiply (1) by 4, 423442y + 8y2=176. (6))
Muitiply (2) by 11, 2222 — 112y + 11 y2 = 176. 4
Subtract (3) from (4), 1822 — 152y +3y%=0. (5)

Factor, Y-8x@wy—-2x)=0 ®)
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System, (6) and (1), which is equivalent to (a), is equivalent also
to the two systems (b).
21+ 2y + 292 =44, 2?+zy+2y =4, b
y—3z=0. y—2z=0. ®
The solutions of systems (b) are /2, 3/2; —/2, —8,/2; 2, 4;
and — 2, — 4; which are therefore all the solutions of (a).
Ex. 8. Solve the system Y —-2xt=4z, N¢)) (
Syt 4ay—2u3=16z @@

The terms below the 2d degree, 4  and 16 z, are similar,
We proceed to eliminate the term in z.

Multiply (1) by 4, 42 —-822=162. ®
Subtract (2) from (8), y?—axy—622=0.
Factor, Ww+2x)(y—82z) =0. 0

System, (4) and (1), which is equivalent to system (a), is equiva-
lent also to the two systems (b) and (c).
2222 =4 —-223=42
Y z_ =1 oy v f=4m) o
y+2x=0. y—3z=0.

The two solutions of system (b) are 0, 0 and 2, — 4; those of (c)
are 0, 0 and 4/7, 12/7 ; which are therefore the four solutions of (a).

Observe that by eliminating the term below the second
degree in each of the systems above, we obtained a homo-
geneous equation in 2 and y, which we resolved into two
equivalent equations.

Instead of eliminating the term below the second degree,
it is sometimes better to eliminate one of the terms of the
second degree.

Ex. 8. Solve the system 922 — 832 =28, (1)
7224348 =81 @@
Multiplying (1) by 3 and (2) by 8, and adding, we eliminate y3
and obtaiin 832% = 832, or z =+ 2. ®)

When z = 2, from (2) we obtain y=4+1.
‘When ¢ =— 2, from (2) we obtain y =+ 1,
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Hence the four solutions of (a) are 2,1; 2, —1; —2,1; —2, —1,

Ex. 4. Solve the system ' zy + = = 26, (@) )
22y — 8y =28, @ “
Eliminating the product zy we obtain
2z+8y=22 3)

Solving system, (1) and (38), which is equivalent to system (a), we
obtain the two solutions 6, 4; 15/2, 7/8.

Ex. 5. Solve the system 22 — 3zy = 10, ¢)) )
4y —ay=—1. @@

Sometimes by adding or subtracting the given equations we obtain
an equation which can be resolved into equivalent equations.

Add (1) and (2), 22—42y+4)2=09,
or t—2y=21438. ®)

System, (1) and (38), which is equivalent to system (a), is equiva~
lent to the two systems (b) and (¢).

23 — 32y =10, 22— 8xy =10,
z—2y=38. }(b) x-—2y=—3.}(c)
Exercise 115.
Solve each of the following systems of equations:

1. o +ay=12, 6. B+b5y =84,
xy—y=2. } ' 3w’+17wy+84=y’.]
2. o 4 xy=24, } 7. 2=Tay—9y*=9,
29y 4+ 32y=232. :v’+5wy+11y2=5.}
3. a:’+3a:y=7,} 8. a;(m+y)=40,}
¥+ 2y =6. y@—y)=6.
4. 322 —b5y*=28, 9. ?+ay+yf="T, }
3wy—4y’=8-} 622 —2ay+y=6.

5. x’—3:cy+2y’=3,} 10. m’+3xy=28,}
288+ =6 xy+4y'=8.
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In example 10, add the two equations.

11. :c’+3:cy=40,} 13, a:’+a:y+44=2y’,}
4y 4 ay=9. 2y + 3 y*=80.

12. 2* 4 3 xy =54, 14. 32y 4+ 2'=10,
ary-i-4y’=115.} 5:cy—2w"=2.}

In example 14, eliminate 2 or the product zy.
15. 4x’—3y’=—11,} 20. (w+1)(y+1)=10,}

11 2% + 542 =301. oy =3.

16. 2224 y'=9, } 21. 4w’—3xy=10,}

: 5a% 46 y*=26. y:—axy=6.

17. 20w’—16y’=179,} 22. o — 22y =3y, }
58— 336y = 24. 241 —9¢2=9y.

18. 2x’—2my—3y’=18,} 23. 2w’—xy+y’=2y,}
32 —2y2=19. 23+ 42y=>5y.

19. 2*+3x—2y=4, } 24. x’+1=9y,}
28 -524+3y=—2. ?42=06y.

308. Systems of symmetrical equations. A symmetrical
equation is one which is not changed by interchanging its
unknowns.

Eg, x+y=12, zy=35, 22 + 92 =174, 22 + 22y + y2=16 are
symmetrical equations. The equations % —y =2, 28 —y% =4,
a4t — yt = 16 are symmetrical except for sign.

The methods given below for solving systems of sym-
metrical equations can usually be employed when the equa-
tions are symmetrical except for sign.

Ex. 1. Solve the system, 22 4+ y2 =74, @ } (@
xy = 36, 2)
Multiply (2) by 2, 2zy =170, 3)
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Add (3) to (1), 23 + 2 zy + 9% = 144,
or z+y==12 O @
Subtract (3) from (1), r—y=+2 (6) } )

By § 804, system (b) is equivalent to the four systems (c).
x+y=12,} z+y=12,} m+y=—12,} x+y=—12,}(c)
z—y=2. z—y=-—2.

z—y=2 T—y=-2.

The solutions of systems (c¢) are 7,6; 6,7; —b, —7; —17, —b.

vEx. 2. Solve the system, 23— zy 4+ ¥ =49, (¢)) } @
z4y=18. @)
Square (2), 23 4 22y + y? = 169. 3)
Subtract (1) from (8), 32y =120,
or zy = 40, “)
Subtract (4) from (1), z—y=+3. (5)
System, (2) and (5), is equivalent to the two systems (b).
z+y=13, z+y=18,
x—y=3. } z'—y:—&} ®

The solutions of systems () are 8, 5, and 5, 8.

The four solutions of system, (1) and (6), must include the two
solutions of (a), since no solution was lost by squaring (2).

Hence the two solutions of (a) must satisfy (2) and also (5).

Therefore the solutions of systems (b) are the two solutions of (a).

Observe that each of the above systems was solved by jirst finding

the values of x +y and x —y.

Ex. 8. Solve the system z* 4 y* = 82, a } @
z—-y=2 @)
Let r=09+w, 3
and y=v—w. (O))
From (2), (8), and (4), w=1 (®)
From (1), (3), (4), and (5), '(b)
(0+1)h+ (0 — 1) =82,
or (v + 10) (v? — 4)= 0.
sv=42, 0or£V_10. (6)
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From (8), (6), and (6), z2=38, -1,1+V-10. } ©
c
From (4), (5), and (6), y=1, -8, —1+V—-10.

System (@) with (3) and (4) forms a system equivalent to (b),
which is equivalent to (¢) with (5) and (6).
Hence the four solutions of (a) are given in (c).

Exercise 116.

Solve each of the following systems of equations by first
finding the values of z + y and  — y:

1. z’+y’=89,} 5. Z*+1+y=3ay, }
a2y = 40. 32—y + 3y =13.
2. 224 ¥ =170, 6. 2 —ay+y*="T6,
xy =13. } c+y=14. }
3. #¥ 4+ =65, 7. &+ ay+y =61,
xy = 28. } z+y=9. }
4. m’+xy+y’=67,}v' 8. a:’—4a:y+y’=52,}
@?—xy+y=39. TeEE—y) =1

9. Solve the systems in examples 1, 2, 4, 5, 8, 12, and 14
in exercise 113, by first finding the values of z+y and
z—y.

Solve each of the following systems of equations:

10. z—y =3, } 13. o' 4y =272,
?—3zy+yP=—19. z—y=2. }
11, Z—ay+9y*="72, 14. z—y=2,
x4 y=14. } w"—-y‘=242.'}‘
12. o+y=4, 15. x‘+y‘=706,}
w‘+y‘=82.} z+y=38.

16. Solve system (2) in § 263, and observe that x and y
are rational only when a* — b is a perfect square.
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309. Division. If the members of onme equation (1) are
divided by the corresponding members of another equation
(2), and the derived equation (3) is integral in the unknowns;
then the system (a) is equivalent to the two systems (b) and (c).

AB=A'B, (1) A=A, (3) B=0, (5)
B=B. (2 } @ p_p. @ } ® B_o © } ©
Observe that (3) is the derived equation, that (4) is the

same as (2), and that (5) and (6) are formed by equating
to 0 the members of (2). '

Proof. Substituting B for B’ in (1) we obtain the sys-

tem. (4. B(d— AN=0,

P f@

By § 202, system (d) is equivélent to system (a).
By § 304, system (d) is equivalent to the two systems (b)

d (e).
and (9 B =0, }
B=RH. ©

By substitution (§ 202), system (e) is equivalent to (c).
Hence (a) is equivalent to the two systems (b) and (c).

E.g., dividing (1') by (2') we obtain the integral equation (3);

Y=2+), ) } @
v=z+y. @"H
Hence system (a’) is equivalent to the two systems (') and (c'),
y=2, (D) } o $®»=0, (8 } @
vi=z+y. @) z+y=0. (6)

Whenever the eQuation B =0 or B'= 0 is impossible, sys-
tem (c) will be impossible, and system (a) will be equivalent
to system (b).
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Ex. 1. Solve the system o8 — y3 =27, (¢))
(a)
z—y=3, @)

Dividing (1) by (2) we obtain the integral equation (8); hence,
a8 B' =0, or 8 =0, is impossible, system (a) is equivalent to (b).

Btay+yr=9, (3)} )
z—y=38. “4)
Ex. 2. Solve the system z* + 2%? 4 y* = 73871, (¢)) } (@
2 —xy + y* =68 @)
Divide (1) by (2), 2+zy+yr=1117. ®)
Add (2) and (3), 23 + 3 = 90, 4) } ®
Subtract (2) from (8), 2 xy = b4. (6)

Since 63 = 0 is impossible, by division (§ 309) and addition (§ 204),
system (b) is equivalent to (a).

Ex. 3. Solve the system 2%y + xy? = 80, 1) } (@)
z+y=>5. @)
Divide (1) by (2), 2y =6. . (6))

Equations (2) and (8) form a system equivalent to (a).

Exercise 117.
Solve each of the following systems:

1. x’+y“=3473,} 6. w‘+w’y’+y‘=243,}
z+y=23 ¥ —zy+y'=09.

2. a:’—y’=218,} 2 w‘+z’y’+y‘=91,}
r—y=2. o+ oy +y*=13.

3. o® —1y® =988, 8. o+ a2 + yt = 2923,
r—y=4 } 2 —xy 4y =3T. }

4. o —yf=2197, 9. ot 4 2% 4 ot =T371,
x—y=13. } 2 — xy + y* = 63. }

5. w‘+w“y’+y‘=2128,} 10. #* — P = 56, }
@ + a2y +y* = T6. @+ oy +y* =28
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11. 2% 4 y® =126, } 12. a4+ y—Vay="T, }
o —wy+ ' =21 @+ ¥ + 2y = 133.
In the next four systems apply § 304 first.
13. z+y=35, } 16. 2 +y=1,
4oy =12 — o™ z’y’+13my+12=0.}
14. a:’y+my’=180,} 16. 5m’—5y’=w+y,}
o%y® = 400. 3 —3y’=a—y.

In the next four systems let the unknowns be the reciprocals of z
and y,and let v=1/2and w=1/y.

17. 2/m+1/y—1 } 20. 1/a? — 1/(4;,*)—3}
1

R R FrA T
18. 1/x41/y=2, } 21. w/_*_u:g}
1/a% 4 1/ = 20. z—y =4y

19. 3/ — 1/ =1, @ +y' = 20.
E_l.‘_g:&] 22. a:’/y+y2/:c=9/2,}
@ ay ¥y z+y=3. '

310. It should be observed that the methods given in this
chapter are applicable only to special systems of quadratic
and higher equations, and do not enable us to solve a sys-
tem of any two quadratic equations; for the equation de-
rived by eliminating one unknown will, in general, be above
the second degree in the other unknown, and we have not
yet learned how to solve an equation of a higher degree
than the second, except in very special cases.

E.g., consider the system
Bt+rt+y=3 2+ = (a)
Solvmg the first equation for y and substltutmg its value in the

second, we have 2+@—y—a) =5,

or xt+ 228 — 422 —62x+4=0. (¢))
Equation (1), which is of the fourth degree, cannot be solved by
. any methods which have been given in the previous chapters.
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Exercise 118,

1. The difference of two numbers is 7, and the sum of
their squares is 169. Find the numbers.

2. The sum of the squares of two numbers is 130, and
the difference of their squares is 32. Find the numbers.

8. The sum of two numbers is 39, and the sum of their
cubes is 17,199. Find the numbers.

4. A person bought some fine sheep for $ 360, and found
that if he had bought 6 more for the same money, he would
have paid $5 less for each. How many did he buy, and
what was the price of each?

8. If the length and breadth of a rectangle were each
increased by 1 yard, the area would be 48 square yards; if
they were each diminished by 1 yard, the area would be 24
square yards. Find the length and breadth.

6. The numerator and denominator of one fraction are
each greater by 1 than those of another, and the sum of the
two is 1&; if the numerators were interchanged, the sum
of the fractions would be 1}. Find the fractions.

7. For a journey of 108 miles, 6 hours less would have
sufficed, had the traveller gone 3 miles an hour faster. At
what rate did he travel ?

8. The hypotenuse of a right-angled triangle is 20 feet,
and its area is 96 square feet. Find the length of the other
two sides.

9. A number is divided into two parts such that the
sum of the first and the square of the second is twice the
sum of the second and the square of the first; and the sum
of the number and the first part is 4 more than twice the
second. Find the number.

10. The small wheel of a bicycle makes 135 revolutions
more than the large wheel in a distance of 260 yards; if
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the circumference of each were one foot more, the small
wheel would make 27 revolutions more than the large wheel
in a distance of 70 yards. Find the circumference of each
wheel.

11. A man bought 6 ducks and 2 turkeys for $15. For
$ 14 he could buy 4 more ducks than he could turkeys for
$9. Find the price of each.

12. The sum of the cubes of two numbers is 407, and the
sum of their squares exceeds their product by 37. Find
the numbers.

13. A rectangular field contains 160 square rods. If its
length be increased by 4 rods, and its breadth by 3 rods, its
area will be increased by 100 square rods. Find the length
and breadth of the field.

14. A man rows down stream 12 miles in 4 hours’ less
timne than it takes him to return. Should he row at twice
his ordinary rate, his rate down stream would be 10 miles
an hour. Find his rate in still water, and the rate of the
stream.

15. The sum of two numbers is 7, and the sum of their
fourth powers is 641. Find the numbers.

16. A gentleman left $ 210 to 3 servants to be divided in
continued proportion, so that the first should have $90
more than the last. Find the legacy of each.

17. From a sheet of paper 14 inches long, a border of
uniform width is cut away all round it, and the area is
thereby reduced §; but had the sheet been 3 inches nar-
rower, and a border of the same width had been cut away,
the area would have been reduced §. Find the breadth of
the paper, and the width of the border cut away.

18. A and B set out from the same place, and travel in
the same direction at uniforin rates. B starts 5 hours after
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A, and overtakes him after travelling 100 miles. Had their
rates of travelling been a mile per hour less, B would have
overtaken A after travelling 60 miles. Find their rates.

19. A man has to travel a certain distance, and, when he
has travelled 40 miles, he increases his speed 2 miles per
hour. If he had travelled with his increased speed during
the whole journey, he would have arrived 40 minutes
earlier; but if he had continued at his original speed, he
would have arrived 20 minutes later. Find the whole dis-
tance he had to travel, and his original speed.

20. A cubical tank contains 512 cubic feet of water. It
is required to enlarge the tank, the depth remaining the
same, 80 that it shall contain 7 times as much water as
before, subject to the condition that the length added to
one side of the base shall be 4 times that added to the
other. Find the sides of the new rectangular base.




CHAPTER XXIV
INEQUALITIES

311. An inequality is the statement that one number is
greater or less than another, as 6 >4, —3<—2. See
§§ 7 and 31.

312, When a and b are real, in § 31 we agreed to say
that:
a>b, when a — b is positive;
.and a < b, when a — b is negative.

The statement ¢a — b is positive’ is expressed in symbols
by a —b>0; and ‘a — b is negative’ by a —b< 0.

In this chapter we shall not consider imaginary or complex
numbers.

3138, Two inequalities are said to be like or unlike in
species according as they do or do not have the same sign of
inequality.

E.g., the inequalities 8 >4 and a>b are like in species ; while
2 < 3 and a > b are unlike in species.

If a > b; then, conversely, b < a.
The inequality a > b and its converse b < a are unlike.

314, Principles of inequalities.

(i) If one number > a second, and this second number > a
third, then the first number > the third number.

That is, if @ > b and b > ¢, then a > c.

(ii) If the same number is added to both members or sub-
tracted from both members of an inequality, the derived in-
equality will be like the given one.

That is, if a > b, then a + m > b £ m.
327
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(iil) If the corresponding members of two or more like
inequalities are added, the derived inequality will be like the
given ones.

That is, if  >b and ¢ >d, then a 4 ¢> b +d.

(iv) If both members of an inequality are multiplied, or
divided, by the same positive number, the derived inequality
will be like the given one.

That is, if a> b, then a(*n) >b(*n), or a +*n>b-+*n.

(v) If both members of an inequality are multiplied, or
divided, by the same negative number, the derived inequality
will be unlike the given one.

That is, if a > b, then a("n) <b(™n), or a +"n<b+ "n.

(vi) If all the members of two or more like inequalities are
positive, and if the corresponding members are multiplied
together, the derived inequality will be like the given ones.

That is, if *a, >+b,, +tay>*bg, «--, :
then *ay ctageee >thy  thy oo,

(vii) If both members of an inequality are positive, and they
are raised to the same positive integral power, the derived
inequality will be like the given one.

That is, if *a >+b, then (*a)" > (*b)", where n is a positive
integer.

(viii) If the same principal roots of both members of an
inequality are taken, the derived inequality will be like' the
given one.

.That is, if a > b, then y/a >-/b.

Proof of (i). (a—b)+(b—c)=a—c.

Hence, ifa —5>0 and b — ¢ >0, then ¢ —¢>0;

- that is, if a>b and b>c¢, then a>ec.

Proof of (i). a —b=(a +m)—(b+ m).

Hence, if a > b, then ¢ + m > b + m.

"The proof of the other principles is left as an exercise for the pupil.
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316, The' following principle is often useful in proving
inequalities :
If a and b are unequal and real, a® 4+ 6 > 2 ab.

Proof. (a—0b):>0,
or a?—2ab+ b >0. (6))
Adding 2 ab to each member, by (ii) of § 314 we obtain
a® 4 b2 > 2 ab, when a+b. @

Observe that a® and b? are both positive.

Ex. 1. Prove (z +y)/2>Vzy, if x>0,y >0, and z £ 3.
If in (2) we put x for a2 and y for b2, we obtain

z+y>2Vay. )
Hence, by (iv), (z + y) /2 >Vay, where >0, y >0, and z = y.
Ex. 2. a®+03>a% + ab? ifa+b>0anda 0.
From (1), a? —ab + b2 > ab. by (ii)
Multiply by a + b, a® + 43> a?b + abd2. by (iv)

Ex. 3. The sum of any positive number, except 1, and its recipro-
cal is greater than 2.

Let the number be n; then in (2), putting » for a? and 1/n for
b2, we obtain
n+1/n>2.
316, The following examples illustrate some of the uses
of the principles of inequalities:

Ex. 1. For what values of z is (b —7)/3> (2 —38z)/6? (¢))

Multiply by 15, 26— 35>6 —9z. by (iv)
Transpose, 84z >41. by (ii)
Divide by 34, x>41/34. by (iv)
Hence (1) is satisfied for any value of x greater than 41/34.

Ex. 2. For what valuesof z is 22 —42+3>—17? (¢))
Add 1, 222 —4x+4>0, or (z—2)2>0. by (ii)

Hence (1) is satisfied when (x — 2)2 >0, .e., when z has any real
value except 2.
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Ex. 3. Find what values of « satisfy the inequalities

4z-6<22+4, [¢))
and 224+4>16—-2z. (2)}
From (1), 22<10, or 2<6. by (ii), (iv)
From (2), 4x>12, or 2>8. by (ii), (iv)

Hence (1) and (2) are satisfied by any value of 2 between 3 and 5.
Ex. 4. Find what values of z satisfy the inequality

»-Tx<8. 1)
Subtract 8, 23 —7x —8<0, or (x—8)(x+1)<0. by (ii)

The product (z — 8)(z + 1) will be negative, when, and only when,
one factor is positive and the other negative.

One of these factors will be positive and the other negative when =
has any value between —1 and 8, and only then.

Hence (1) is satisfied by any value of z between — 1 and 8.

Ex. 5. Find what values of  and y satisfy the inequality

8z +2y>5, )

and the equation bx+Ty=12 (2) }
Multiply (1) by 5, 162 + 10y > 25. 3)
Multiply (2) by 3, 16z + 21y = 86. @
Subtract (4) from (3), —1ly>-11, ory<1. by (v)
Multiply (1) by 7, 21z 4 14y > 36. 6)
Multiply (2) by 2, 102+ 14y =24. 6)
Subtract (6) from (6), z>11, or 2> 1.

Hence any solution of equation (2) in which 2>1 and y <1 will
satisfy both (1) and (2).
Bxercise 110.
If the letters denote unequal positive numbers, prove:
1. a4+ b2+ > ab+ ac + be. @
Use the relation a2 + b2 >2ab.
2. a®+ b > a?b + ab® . @)
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a+d ]
2 a+bd’' v a b a @
4. &+ V4> (a’d + ad® + a%c + ac® 4 bc + beh) /2.

5. am+bnter<l, if a'+b0'+ =1, and m+n+ =1

Find the limits between which the values of # must lie
to satisfy each of the following inequalities :

6. 6x>3z+18. 10. o'+ 2>12.

7. $z—§z>}z-3. 11. (z+2)/(x—3)>0.
8. —2(z+7)>—16. 12. (z—T7)/(z+4) <O0.
9. #—5z>—4. 18. 3(z+7)/5>5(x—3)/1.

14. If52—6<32+8and 22+ 1 <3 x—3, show that
the values of z lie between 4 and 7.

15. If 3z—2>}x—$and I — § # <8 — 22, show that
the values of z lie between 12/25 and 82/9.

Find what values of z and y will satisfy each of the
following systems:

16. 2x+3y=4,} 17. 3z—y=6, } 18. 42—2y=6, }
z—y>2. 2x4+y>4. 22—-3y>5.
19. Show that (1) in example 1 holds, if a, b, and ¢ are
real and either a = b, orac,or b+c.

20. Show that (2) and (3) in examples 2 and 3 hold, if a
and b are real and unequal and a + b > 0.



CHAPTER XXV
RATIO AND PROPORTION

317. The ratio of one number to another is the quotient
of the first divided by the second.

The dividend is called the first term, or the antecedent, of
the ratio; and the divisor, the second term, or consequent.

The ratio of a to b is written g, a/b, a + b, or a: b, each of which

forms can be read ‘a is to b’ or ‘a by b.’
The ratio of 8 to 2 is 8/2, or 4 ; the ratio of 7 to 5 is 7/5.

It is clear that a ratio is arithmetically greater than, equal
to, or less than 1, according as its first term is arithmetically
greater than, equal to, or less than, the second.

318. Since a ratio is a fraction, all the properties of frac-
tions belong to ratios in whatever form the ratios are written.

Thus a:b=am:bm, or a/b=am/(bm); §172
and a:b=(a+m):(b+m), or af/b=(a+m)/(b+m). §178

Two ratios can be compared by reducing them as fractions
to a common denominator.

Ex. 1. Which is the greater, 8: 11 or 5:19?

8:11=8/11 =57/209, and 5: 19 = 5/19 = 55/200 ;

hence the ratio 3 : 11 > the ratio 5: 9.

Ex. 2. (a:bpP=a*:0%; Va:b=ya: yb: §§ 186, 225.

319. By § 91, (a:b)(c: d)(e:[f) = ace: bdf.
The ratio ace: bdf is said to be compounded of the ratios
a:b,c:d,and e: f.
332
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320. The inverse of a ratio is its reciprocal.
Hence the inverse of the ratio a:b is the ratio b:a
(§ 182).

321. By § 183, a/b:c/d=ad: bc.
Hence the ratio of any two fractions can be expressed by
the ratio of two integers.

322, Two numbers are said to be commensurable or incom-
mensurable with each other according as their ratio can or
cannot be expressed by the ratio of two integers.

E.g., v/2 and b are incommensurable with each other, so also are
v3and /6. The incommensurable numbers 3,/2 and 7,/2 are com-
mensurable with each other; for their ratio is 3/7. Compare § 224.

323. Ratio of concrete quantities. If A4 and B are two con-
crete quantities of the same kind, whose numerical measures
in terms of the same unit are the numbers a and b, then the
ratio of A4 to B is defined to be the ratio of a to b.

Exercise 120.

Find the simplest expressions for the following ratios:

1. 6a to 124’ 4. afx to c/y.

2. 3a%/5 to 6az'/T. 5. a/(@—2) to3/(z —2).
3. 1/a to 1/b. 6. 9/(a—b)* to 6/(a—b).
7. Write as a ratio (2z:3%)%; (2a:b)%; (a:c)’; Va:b.

Find the ratio compounded of :
8. The ratio 25: 8 and the square of the ratio 4 : 3.
9. The ratio 32: 27 and the cube of the ratio 3: 2.
10. The ratio 6:7 and the square root of the ratio 25 : 36.

11. Arrange the ratios 5:6, 7:8, 41:48, and 31:36 in
descending order of magnitude.
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12. For what value of 2 will the ratio 164 2:17 4«
be equal to 1/2°?

13. What number must be added te each of the terms of
the ratio 3: 4 to make it equal to the ratio 25:32?

Let z = the number to be added ; then
B +2)/(4+2)=26/32.
14. Find two numbers in the ratio of 5 to 6, whose sum
is 121.
16. Which is the greater ratio, 5:7 or 64+2:7+4+27?
16. Which is the greater ratio, 7:5 or 7+2:5+427?

PROPORTION.

324, Four quantities are said to be in proportion when the
ratio of the first to the second is equal to the ratio of the
third to the fourth.

An equality whose members are two equal ratios is called
a proportion. Thus, if

a:b=c:d, @
then a, b, ¢, and d are in proportion, or are proportional, and
equation (1) is a proportion.

A proportion can be written in the form

a/b=c/d, a:b=c:d, or a:b::c
each of which is read ‘a by b is equal to ¢ by d ’or ‘a is to
b as ¢ is to d.

The four numbers in a proportion are called the propor-
tionals, or the terms, of the proportion.

The first and fourth terms are called the extremes, and
the second and third the means.

E.g., a and d are the extremes, and b and ¢ are the means in the

proportion
a:b=c:d.

In (1), d is called the fourth proportional to a, b, and c.
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326. The following theorem and its converse in the next
article are the two fundamental principles in proportion.

In any proportion the product of the extremes i3 equal to the
product of the means.

That is, if a:b=c:d, @
then ‘ ad = be. 2

Progf. Clearing (1) of fractions, we obtain (2).

Ex. The first, second, and fourth terms of a proportion are c3, 2a,
and b b respectively ; find the third term.
Let 2= the third term of the proportion ;

then c2:2a=2x:5b.
s 2ax=06bc?, or z=>5bc2/(2a).

326. Conversely, if the product of one set of two numbers
18 equal to the product of another set of two numbers, either set
can be made the extremes and the other set the means of a

proportion.

Proof. Let ad = be. @)
Divide (1) by db, a:b=c:d,or c:d=a:b.
Divide (1) by de, a:c=b:d,orb:d=a:c
Divide (1) by ab, d:b=c:a,or c:a=d:b.
Divide (1) by ac, d:c=b:a,or b:a=d:c

From this principle it follows that —

(i) A proportion is proved when it i3 proved that the product
~of its extremes i8 equal to the product of its means.

(ii) In a given proportion, we can interchange the means,
or the extremes, or we can take the means as extremes and the
extremes as means.

3271, If a:b=c:d,
then ma:mb = nc: nd, § 172
and ma:nb=me:nd. §§ 6, 91
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328. Any proportion,as a:b=c:d, )
can be taken by
(i) inversion; that is, b:a=d:c, @)
(ii) alternation; thatis, a:c=b4:d, 6))
(iii) addition; thats, a+b:a=c+d:e, . C))
or - a+b:b=c+d:d, ®)
(iv) subtraction; thatis, a —b:a=c—d:e, (6)
or a—b:b=c—d:d, )
(v) addition and subtraction ; that is,
at+b:a—b=c+d:c—d. ®
Proof. From (1), ad = be. aan
Addddto (1), (a+b)d=(c+d)d. (€3
Add —bd to (1), (@—b)d = (c— d)b. 3"

By § 326, from (1"), we have (2) and (3); from (2"), (5);
and from (3", (7).

Dividing (2') by (1'), we obta.m 4).

Dividing (3') by (1'), we obtain (6).

Dividing (2') by (3'), we obtain (8).

Observe that (2) and (8) can be obtained from (1) by (ii) of § 326.

329. The products or the quotients of the corresponding
terms of two proportions are proportional.

That is, if a:b=c:d, @
and a:b=c:d, ()]
then aa': bb' = cc' : dd', ‘ 3)
and aja' :b/6'=c/c':d/d. : (Y]

Proof. Multiplying (1) by (2), by §§ 6 and 91 we ob-
tain (3). .
Dividing (1) by (2), since ‘_‘,%E %/ZI‘)L, we obtain (4).

330, Like powers or like prmczpal roots of propm'twnals are
proportional. .
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That is, if a:b=c:d, @
then a":"=¢c":d", &)
and ~va:~/b=<x/e:/d. ©)]

Proof. By §§ 128 and 186, from (1) we obtain (2).
By §§ 221 and 225, from (1) we obtain (3).

33L. In a series of equal ratios the sum of the antecedents
i8 to the sum of the consequents as any one antecedent i8 to its
consequent.

That is, if a:b=c:d=0:f=-., (6))
then a+c+o0+-:b+d+Ff+ - =a:b=c:d=-..
Proof. Let a/b=r; thenc/d=r,e/f=r1, -}
hence a=>br, c=dr, e=fr, -+
Adding the members of these equations, by § 6, we obtain
atctet - o=0+d+f+ )
Letcted -
b+d+f+ -

832, A general and easy method for proving a proportion
is to represent the value of one of the equal ratios in the
given proportion by a single letter, as was done in the last
section,

Ex. 1. Given a:b = c:d, prove that

adtab:cd+cd=02—2ab:d®—2cd. Q)
Let a/b=r; thenc/d=r;
then @ =br, and ¢ =dr.

Substituting these values of @ and ¢ in each ratio of (1), we have
a+ab_ b4+ 0% b¥ri+4r) B2
St PR+Pr F(PB+r) &

b2—2ab_ 0% —20% _0%(1—2r) 03,

#—2cd d—2dr B(1-2r) @

Hence the ratios in (1) are equal.

and
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Ex. 2. Givena:b=c:d =e:f, prove that

a®+ 4 €: 0% + d® + [ = ace: bdf. Q)
Let a/b=r; then ¢/d=r, and ¢/f=1r.
Hence a=>br, c=dr, and e =fr.

Substituting the values of a, ¢, and e first in the product of the
extremes, and then in the product of the means, we obtain

(a® + & + e®)bdf = (b® + d® + f3)r'bdf,
and (B + @+ f¥)ace = (b8 + @@ + f3)r3bdf.
That is, the product of the extremes in (1) is equal to the product
of the means; hence, by (i) of § 826, (1) is proved.

333. A continued proportion is a proportion in which the
consequent of each ratio is the antecedent of the following
ratio. Thus a, b, ¢, d .- are in continued proportion if

a:b=b:c=c:d=-..
If a:b=>0:c¢, then b is called a mean proportional between
@ and ¢, and c is called a third proportional to & and b.

Ifa:b=>b:c=c:d, then b and ¢ are called the two mean
proportionals between @ and d.

334, The mean proportional between two numbers is equal
to the square root of their product.
Proof. If a:b=b:c, then ¥®*=ac, or b =Vac.

Exercise 121,

From each of the following products form four different
proportions and their converses :

1. gy=mn. 2. 6x3=2x9. 8. a*—b=a2"—9
Find the fourth proportional to the three numbers :
4. a, ab, c. 6. a?, 2ab, 3b% 8. o’ xy, baly.

Find the third proportional to the two numbers:
7. a®, ab. 8. o* 24 9. 3z, 6uay. 10. 1, =
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Find a mean proportional between the two numbers: -

11.
12.

a? b2 13. 12 aa? 3ad
247 8. 14. 27 a®® 3b.

If a: b=c:d, show that

15.
16.
17.
18.
19.
20.
21.
22.
238.
24.
26.
26.

27.

ac:bd=c: d>

at:d=a—b:c*—d
2a4+3c:3a+2¢c=2b+3d:3b+424d.
la + mb : pa + gb =lc + md : pc 4 gd.
a:a+c=a+b:a+b+4c4d.
a?+ab+b:a?—ab+ 0=+ cd+d: 2 —cd +
a+bic+d=V@+0:VE+ &
VE+P:VEF B =VE+B: VE+ .
a’c+ac’:b’d+bd’=(a+c)3:(b+d)’.
Va4 bt Ver+dr =Var—b: e —d.
Ifa:b=0b:c, prove that a: c=a?: b°

Ifa:b=b:c=c:d, prove that a:d =a?: b%
Let r=a-+b; then a=br, b=cr, c=dr
soabe=Dbedrs. s a+d=1r3=ad+ b3

If a, b, c,d be any four numbers, find what number

must be added to each to make the results proportional.

28.

Two numbers are in the ratio of 3 to 8, and the sum

of their squares is 3577 ; find them.

29.

The ages of two persons are as 3:4, and 30 years

ago they were as 1: 3; find their present ages.

30. The sides of a triangle are as 3:4: 5, and the perim-
eter is 480 yards; find the sides.
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31. Divide the number 14 into two such parts that the
quotient of the greater divided by the less shall be to the
quotient of the less divided by the greater as 16 to 9.

32. Show that the ratio of any two fractious, not involv-
ing surds, can be expressed by the ratio of two whole
numbers.

33. Express the ratio of 5} to 7 by the ratio of two
whole numbers.

34. Express the ratio of 17} to 144 by the ratio of two
whole numbers.

86. The sum of two numbers is 8, and their product is
to the sum of their squares as 3 to 10. What are the
numbers ?

86. The sum of two numbers is 10, and the sum of their
squares is to the square of their sum as 13 to 25. What
are the numbers ?

87. A hare is pursued by a greyhound, and is 60 of her
own leaps before him. The hare takes 3 leaps in the time
that the greyhound takes 2; but the greyhound goes as far
in 3 leaps as the hare does in 7. In how many leaps will
the greyhound catch the hare ?

Let z = the number ‘of leaps taken by the greyhound,
and y = the number of leaps taken by the hare in the same time ;
" then z:y=2:8,
and . y+60:2=7:8.




CHAPTER XXVI
THEORY OF EXPONENTS

335. Hitherto we have defined and used only positive
integers as exponents. It is, however, found convenient to
extend the meaning of an exponent so that we can use zero,
a fraction, or a negative number, as an exponent.

As it is desirable that all exponents should obey the same
laws, we shall fix the meaning of (i.e., define) any new expo-
nent by imposing the restriction that all exponents must
obey the fundamental law,

a™ X a" = a™*", (¢))
E.g., to find the meaning of a}, we have by law (1),
B O B R o
that is, (ai)"E a; a*E the cube root of a. § 218
Again, to find the meaning of ai, we have by law (1),
aLa&Eai + gsa*sa‘;

that is, (a*)’E at; . ot =the square root of a8, § 218

336, Meaning of a positive fractional exponent.

Let r and s denote any positive integers; then by the
fundamental law of exponents, we have
r r e r
a*-a* - to 8 factors = g# T4 ™
re
=ad' =a;
4 r
that is, (e)y=a"; .. o = the sth root of a; §213
that is, @’ is only another way of writing the sth root of the
rth power of a.
841
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Hence a positive fractional exponent denotes a root of a
power of its base. The denominator indicates the root, and
the numerator the power.

1
Thus a* denotes the sth root of a.

837, Using o to denote only the principal sth root of a,
we have

o =Va = (Ya), §§ 220, 226
1
and a*=-Ya.

Ex 1l st=y8=2; 4i-(up=2=s
Ex. 2 st—(umypr=21=4
Ex. 3. (-32)t =(¥=32)t=(-2)t = 16.

338, Meaning of zero as exponent.
By the fundamental law of exponents, we have
a*-a®= a0 = g™
o =arfar=1.
That is, any base, except zero, with zero as an exponent is
equal to positive one.
Observe that a° is only another way of writing a™/a™, or 1.

Eg., d=afa=d/al=at/at=...=1.

339. Meaning of a negative exponent.

Let » denote any positive integer or fraction; then by
the fundamental law of exponents, we have

atcam=agtV=a=1.
a"=1/a"

That is, a~" is only another way of writing the reciprocal
of a", or of denoting that a" is to be used as a divisor.

Eg.,3%=1/8=1/9; (—2)3=1/(-2)8=—1/8,
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Note. The arithmetic value of an exponent denotes a power, or
a root of a power, of its base; and its quality denotes whether this
power or root is to be used as a factor or divisor.

Fractional and negative exponents express no new ideas, and are
not necessary to the notation of algebra; but they are very con-
venient, and greatly facilitate many operations. Fractional ex-
ponents simply afford another way of writing a root of a power; and
negative exponents, another way of writing a divisor.

340. Hereafter in this chapter we shall use a* to denote
only the principal sth root of a, or, what is the same thing,
the rth power of the principal sth root of a.

Observe that » can be either positive or negative, but
that s is always positive.

Ex 1. 8§¥=29=1/22=1/4
Ex. 8. (—20)#=(-8)4=1/(-8)=1/8L
Ex. 8. (—82) %= (-2)¢=1/64
Note the advantage of first extracting the root in these examples.

341. A base with any exponent is called an’ exponential
expression ; as, 3% a%, (¢ +y)°, c**.

342, The quality of an exponent can be changed if the
sign before the exponential expression is changed from x
to +, or from + to Xx.

Proof. axbrmr=ax A/t =a+b" @

Also a+bm=a+ 1) =ax b @)

343, Any exponential factor can be transferred from the
dividend to the divisor, or from the divisor to the dividend, if
the quality of ils exponent i8 changed from + to —, or from
— to +.

Proof. This is the converse of (1) and (2) in § 342.

Or this operation is simply multiplying both dividend
and divisor by the same exponential expression.
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Ex. 1. a%/c*=c?/a?; a3/b2=0%/a’

~122 o292 1
Ex. 8 &% =07 = gapag-1y-s= .
x corey c~ixz-%gys

T e

Exercise 122.

Find the value of each of the following expressions:

1. 42 5. (2/3) 9. 8. 13. (27/8)L.
2. 5% 6. 1/5= 10, 47k 14. (81/16)7%.
3. 3/ 1.1/3% 1. 9% 15. (—2n%.
4. (2P 8. 35 12. (4/9)t 16 (—125)7H%
1. 8.l a8 (1/69)7F. 19t 10, (1/25)F. 27H

Write each of the following expressions without using
fractional or negative exponents:

20. al. 22. 3at. 24. 2a57%.  26. (z/y)t.
21. ot 28. 2atyh 25 (a/m)t.  2v. (m/y)_s.
28. 6a_1,z_}- s1. z:i:} 34. w"_‘:;_b;'
29. ?;2;?: 32. %’ 85. ﬁ—L—?(:i;;f; 4.
30. Sz b(x—y) z(z+y)~°

. 33. . 36. .
7 c-2dpd (@+y)* a(z+y)™

37. Write each of the expressions in examples 28 to 36
in the integral form, i.e., transfer all the factors from each
denominator to the numerator.

38. Using fractional exponents, write +/a*; ¥/of; v/27;
Y

39. Using negative fractional exponents, write /1/5;
Vija®; V1jad; V1jam
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344, The meaning of any real commensurable exponent
having been determined, it remains to prove that any such
exponent obeys all the laws of positive integral exponents.

For convenience in stating these laws we shall enlarge the
meaning of the word power so as to include whatever is
denoted by an exponent.

845, Exponents were so defined as to obey the following
fundamental law :

The product of the mth and the nth power of any base is
equal to the (m + n)th power of that base.

That is, ama" = am+n, I
where m and » denote any commensurable real numbers,
Ex. 1. x* . x* = m**'* = xi'.
Ex. 2. x'g . z‘g = ~++(-D) = :c'g.
Ex. 8 st t.zsad=z1at=1 / (za*).

348. The quotient of the mth power of any base divided by
the nth power of the same base is equal to the (m — n)th power
of that base.

That is, am/a" = am-n, II

where m and n denote any commensurable numbers,
Proof. atrat=a™ X e = g™ " §§ 342, 345
Ex.l. z8+zxt=2-3 (V=2 §§ 342, 346

Ex. 2. a*+ at = ag_('ﬁ) = ag.

Ex. 3. a ¥+ a‘; = a_*'('l’) =al
347. By § 251, Vo' =Va™; .. @' =a™.
Hence ag+§ = a% f_; = a'%.

Ex. 1. x* . :t:f = x*+§ = xs%s = :cH.
Ex. 2. ot /:a:§ =at= x‘%@ =274,
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Bxercise 123.

Simplify each of the following expressions:

1. &' 5. ofxixT. 9. a®% x a™%

2. a~%a’. 6. a~*a%a’. 10. 3 w_*yi X2 w'*y*.
3. a™d’ 7. alad, 11. 427t x 3atad:
4. z7%S 8. at.qah, 12. 2287 x 5278,

13. a/a’. 15, 47%/4-% 17, o~/ 19, o i/gd
4. Pzt 6 T3/T4 18, zT/z . 20. yE/yE

21. (3z7%)/(6z™"). 90. m"g/m‘f,
22. ™" /™,
s0. zt/xt.
23. al/a*2
24, o /ot 31. alel. glsd
25. o[zt 32. alot. ot
26. x~ /x>, 33. x&y* /(w—*y-'}).
27. ot .ot a4, Yoo e
28. alala . 35. Y. Yor+ Ve

348, If m and n denote any commensurable real numbers,
the other three laws of exponents are:

The nth power of the mth power of any base is equal to the
mnth power of that base.

That is, (am)n = amn. III

The nth power of the product of any number of factors is
equal to the product of the nth powers of the factors.

That is, (ab--)n=anb ... 1v
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The nth power of the quotient of one number by another is
equal to the quotient of the nth power of the first by the nth
power of the second.

That is, (a/b)" = an/bn. v
Ex. 1. (@) 3= =z0=1/20. By III
Ex. 2. (82 ¢ =s2(D_gl_16 ' By III
Ex. 8. (a3 t=q3D = B, By III
Ex. 4. (x7ly )= (:n:“l)‘ﬁ(vy"’)'2 = zp. By III, IV

Ex. 5. 03z t=oh oo t=obmu=3nm
Ex. 6. (22/a~%)"% = (2%a®)-2 = x~*a"".

Ex. 7. (z*/ y*)-" = (aclz‘y_})'6 =48

B s, (L51)Ho(200)0 1w

09y 3yt g-a§
=27y%s/8.
Wi oo _abt janyt
a NV
B Vet Nyvas - bat (ba")
= afot - (a9t
= aib"g -+ ab"* = a}.

349, Proof of laws I1L, IV, V when m and n are positive
Jractions.

Let p, g, r, and s denote any positive integers.

To prove III, (a,':); = (Vo) § 337
- =@y - § 227
=[(YayT § 226

= (YYa)r =a. 111
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To prove IV, (ab); = V/(aby § 337
= Vatr § 119
=va VY § 224
= a;bE. v
To prove V, (a/b)E = V(a/b)y § 337
= Va' /i § 186
=vVa /v § 225
= a,'!/b':. v

3560. Proof of laws III, IV, V when m and n are negative.
Let k and % denote any positive integers or fractions.

To prove III, (a®)*=1-+ (1/a** § 339
=1+ 1/a™) §§ 186, 118
=a*. III
To prove IV,  (ab)™ =1/(ad)* § 339
=1/a*?* § 119
=1/a*) (1/0*) = a ™ v
Toprove V,  (a/b)™=1+ (a/b)* § 339
=1+ (a*/b) § 186
=b0/a* = a7 v

The verification of laws III, IV, and V when m or = is
zero is left as an exercise for the pupil.

Exercise 124.
Simplify each of the following expressions:
I T () 4. (@ H 7. (@)™
2. (a) 5. @Ht 8. (a9

3. (ah)* 6. (a")* 9. (Vo




10.
11.
12.
13.
22.

23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
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VaHt 14. (4o 18. (atab)n
(Va), 15. (8a
(Vo™= 16. (z%y )~ 20. (a~/32)7%,
(@ha)2 17. Bate )t a1 2atym)e

Ba*Vah)
(™)
BVaVe,
(/=)
[—2Za~/(42)]™
@2at /a7t

VEER
VN

Varoy-@—wt,

33.

34.

356

387.

38

39

19. (a%He

VeV g Ta.
V@+by. @+l

- as;’-‘:) ()"
| eg)
= (L">"
) (b 7‘-:—(‘;::?

3 -1

x
(% . 3,
= 'a a8

“‘l

Q

e o

351. The following examples are applications of the
methods of multiplication, division, and evolution, to poly-
nomials whose terms involve fractional and negatlve expo-

nents:

Ex. 1. Multiply Ya+1+1/Yaby ya+1/¥a—1.
The terms + 1 and — 1 may be regarded as the coefficients of a";
hence arranging both expressions in descending powers of a, we have

a§+l -l-a_‘
ai—l +a"}

a§+a*+l

_ai_l_a—}
+1+atiat

ag +1

+at
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Ex. 2. Divide16a-*+5a1—6a24+6by 1+ 271
Arrange in ascending powers of a.

16a3 - 6a-%+ 6a'1+6|2a'l+ 1
16a-2 4+ 8a-? 8a3—-T7a7146
—14a2+5a?
—14g-2 —7g"1
12¢-1+6
12g-1 46

Ex. 3. Find the square root of
4z + 2::;* - 41} - 4z§+z§+z‘.

Arrange in descending powers of z.

z§—4z*+2z"+4z—4z*+z§|z¥—2z*+z}

.
23:*-2:»* —4z*+2:c*+4z
—43& + 42
235—4z*+x} 224 —4x§+a;*
2.@* —4x*+a:*
Exercise 126,
Multiply :

1. ot +adot ot by at — bk,

2. w*—m*y*-}-y’ by wi+y‘}.

3. 323 —548aF by 423 + 347,

4. 3at—aat—qt by 3a*+a‘*—6a_9.
at +atot 4ot by a*—a§b§+b*.

(=]
by

x*—w’+x¥—x by w*-}-a:*.
ot — *-i—x*— 1 by :c*-{-x*.

® X ®

at 4+ o¥ 4t — oYt — dab — abpd by at + bt + .
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9. »+2°+1 by 242 41,

10.
11.

pa¥ — gpabt + pato — 1ok by pal 3ol
¢+2¢c>*—T7by 5—-3c*42¢

Divide:

12.
13.

14.
15.

16.
17.
18.

19.
20.
Find the square root of the following expressions:

21.
22.
23.
24.

265.

26.

27.

2la:+a:§+z§+1 by 3:c*+1.
15a—3a}—2a¥4+8a by 5al +4.

508 —6bt — 467t —4p3 5 by st -2t
21 a* 4 20 — 27 o — 26 a* by 3 a*—b.

ey trorahtvy oy t—14ahd

af + a®t — alot — ab + atot 0% by of + 01,
oty oy ¥aF by oyttt
at—24qt by at—at
8¢c*—8c¢c*+5c™—3¢ by 5c*—3c™

25a% +16 —30a — 24 at + 49at.
9w—12m’}+10—4:c"*+z“.

42202+ 1220+ 25 + 24 v 'a + 16 x~%a,
25yt + 1yt — 20wyt — 2921 4+ 9.

ot —2a7 8 4 2atat + a ¥ — 2a¥at 4ok,
42 4+9s 428 —24 2 " —16 24"

92— 182 Vy + 15y + 2 — 6V + 2+ 1~

851
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352. The following examples are applications of the for-
mulas for products and quotients in Chapter IX., to binomials
whose terms involve fractional and negative exponents :

) @at -zt =@ady 4 s@aby- 2
+3@ah (st (—ahr ()
=8at—12art 4 8abe1 — oL (2)
@ het-ph=@Etr-ohi=s-pn § 122
(3) (Tz—9y-1)(Tz+9y-1)=49022—81y3,
4) (4z—b6x1)(424+321)=1622+ (82" 1-bz1)42—-1623 §123
=1623 -8~ 15272
® @@ -n=[@Ehy-eto
=@r+Etp+edrrdel gi20
= *+z+z§+zi+ 1.
©® e+ +)=[(@tr+3+@t+9)
=2-38 :tci + 9.

Exercise 126.
Write the value of the following expressions:

1. @4ty 3. (m}+nhy 5. ¢t — sty

2. (@t —yht 4. (@ —bhye 6. Cat—aty
7. (4 bt 1. (at+ o7ty
8. (*—3n by 12. (ot — gy
9. 3Va—}vb) 13. (ot +1) (2 -1).
10. @¥-2 b’c')‘. 14. (@ + @t - y*).

15. (4 ot +3 a;*)(4 ot —3 a'*).
16. Bxz—5a)@Bx+2a™).




23. (At
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17.
18.
19.
20.
21.
22.

24, (x4 —1)+ (1 41).
25. (2 +32) + (=" + 2).

3353

{ab —ct) (ab + 3 7).

r—9a)—+ (.r} +3ah

(@™ —16) + (@~ — 1.

@48+ (x=+2)

=)+ (— C-P).
1—-8adH+(A—-2aM).

26. (2 —y9) + (—yh).

27. (2+y) + @+ ).

28. (z—243y%) + ¥ —3yh.

Solve the following equations, each of which is, or can
be, put in quadratic form (§ 300):

29.
30.

31.
32.

33.

34.
385.
36.
37.
38.
39.
40.
41.
42.

r?—22x1=8,
942+4=10z"
z—8zt +12=0.
at— 262t —27=0.
z?-+6=5x3.
325220,
x}+3w_}=4.

3zt —3s1=38.
22 2015
6at=7st 251
4a 384
st —2st f1=0.
6Vz=>5a1—-13.
1+82t+9v7F=0.

Ans.
Ans.

Ans.
Ans.

1/4, —1/2.
1, +1/3.
4, 36.

81.

. 2% 3n,
. 1, 2,

.1, 27,

. 9,

. 4,14,

. 4/9,1/4,

. 243/32, —1/32,
.1, (=1 +V=3)/2.
. 1/9.

. —1, —1/32,



CHAPTER XXVII
INDETERMINATE EQUATIONS AND SYSTEMS

363. Division by zero. As a quotient, 0/0 denotes the
number which multiplied by 0 is equal to 0 (§ 85). By
§ 74 any number multiplied by 0 is equal to 0; hence 0/0
denotes any number whatever, or s indeterminate. That is,
when the dividend is zero, division by zero i3 indeterminate.

As a quotient, a/0 denotes the number which multiplied
by zero is equal to a. But any number, however large,
multiplied by zero, is zero; hence the division of a by 0
is impossible. That is, when the dividend is not zero, division
by zero is impossible in the sense that no number can express
the quotient or any part of it.

364, The forms 0/0 and a/0. As an answer to a problem
the indeterminate form 0/0 denotes that the problem is
indeterminate, .e., has an unlimited number of answers.

As an answer to a problem, a/0 denotes that the problem
involves inconsistent conditions, and is therefore impossible,
as is illustrated by the following problem :

Prob. A and B are travelling in the direction PR at the rates of a

and b miles per hour. At 12 o'clock A is at P and B at @, which is ¢
miles to the right of P. Find when they are together.

P Q R

Let distances measured to the right from P, and penods of time
after 12 o’clock, be regarded as positive.
Let = the number of hours from 12 o’clock to the time when A
and B are together.
Then ax =bx + ¢. 1)
c
Hence %= Py y 2)
854
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Discussion. If ¢ >0 and a > b, z is positive ; that is, A will over-
take B at some time after 12 o’clock.

If ¢ >0 and a<b, x is negative ; that is, A and B were together
at some time before 12 o’clock.

If c=0 and a b, =0; that is, A and B are together at 12
o’clock, but not before or after that time.

Ifc=0and a=0b,x=0/0; that is, A and B are always together
under the conditions; and the problem is indeterminate, i.e., has an
unlimited number of answers.

Ifc£0 and a=b, x=¢/0; that is, A and B can never be
together as they are always at a fixed distance apart; the problem
involves inconsistent conditions, and is therefore impossible.

Observe that the fraction

assumes the form % by
reason of two independent conditions; namely, ¢=0 and
a=>b. In any such case the form 0/0 indicates that the

given fraction can have any value under the conditions.

356, An impossible equation is one which expresses a con-
dition which cannot be satisfied.

E.g., 3z + 5 =382z — 8 is an impossible equation ; for it expresses
the condition 0 . z = — 13, which no value of z can satisfy. .

Again, y/z =— 3 is an impossible equation, when /% is restricted
to its principal value.

An impossible system of equations is a system whose equa-
tions are inconsistent (§ 206).

E.g., the system az+by=c, (1) , } (@)
8ax+3by=56¢, (2)

is impossible ; for its equations are evidently inconsistent (§ 208).

An impossible equation or system of equations is often a particular
case of a more general equation or system, in which the solutions
involve the form a /0.

Thus, the equation az = b becomes impossible only when a =0,
and then its root b/a becomes b/0.

It will be seen in § 356 that a system of two linear equations in
x and y becomes impossible only for a certain relation between the
coefficients of its equations, which makes the values of z and y assume
the form a/0.



856 ELEMENTS OF ALGEBRA

Again the system
z+y=09, @
2z +y=13, (2)}(b)

is impossible ; for the only solution common to (1) and (2) is 4, 5,
and this reduces (3) to 20 = 16.

Equation (3) cannot be obtained from (1) or (2), or by combining
(1) and (2); hence it is independent of them separately and jointly.

System (b) illustrates the principle that

When the number of independent equations in a system ex-
ceeds the number of unknowns, the system is impossible.

366. A defective system is one which lacks one or more of
the full number of solutions which we would expect from
the degrees of its equations.

E.g., the system

a323 — b3 = c3, 1) } (@)
ax—(b+e)y=c, 2)
which has, in general, two solutions (§ 308), becomes defective when
e=0.
For, dividing (1) by (2) when e = 0, we obtain
az +by=c. 3)

Equations (2) and (8) form a system equivalent to system (a);
hence system (a) has but one solution when e = 0.

367. An indeterminate equation is one which has an un-
limited number of solutions. Thus any equation in two or
more unknowns is indeterminate. ‘

An indeterminate system of equations is one which has an
unlimited number of solutions.

E.g., the system 8z4+4y+562=0, (@)
r—y—22=0,

is an indeterminate system ; for, assigning any value whatever to 2,
we can find a corresponding set of values of x and y. Hence, system
(@) has an unlimited number of solutions, and is indeterminate.




ot

INDETERMINATE EQUATIONS AND SYSTEMS 857

Again, the system

224+ 3y—2=15, (¢))
$z—y+22=38, @)
bx+2y+2=28, (8)

is indeterminate. No two of its equations are equivalent, but any
one of them can be obtained from the other two ; thus, by adding
(1) and (2), we obtain (3). Hence the system contains but two in-
dependent equations, and therefore any solution of two of them will
be a solution of the third.

These examples illustrate the following principle :

When the number of independent equations in a system is
less than the number of unknowns, the system is indeterminate.

Ex. By discussing its solution, show that the system

ax + by =c, } (@
a'z + by =¢,
is (¢) indeterminate if Z—, =% = ;i,; ; Q)
and (#) impossible if -Z—' = % +* z._' @)
By § 207 the values of z and y in system (@) are
blc — be! ac’ — a'c
= ) = 3
F=w—ab ' a—ab ®

(1) When condition (1) is satisfied, from (1) we have

ab! —a'b=0, b'c —be' =0, ac’' —a'c=0; -

hence the values of z and y in (3) each assume the form 0/0 ; that is,
the system has an unlimited number of solutions, and is therefore
indeterminate.

(ii) When condition (2) is satisfied, we have ab' —a'b =0.

But neither b’c — bc! nor ac’ — a/c is zero.

Hence the value of each z and y -assumes the form a/0; that is,
the system has no solution, and is therefore impossible.

The equations in («) are evidently equivalent when (1) is satisfied,
and inconsistent when (2) is satisfied. :
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358, Sometimes it is required to find the positive integral
solutions of an indeterminate equation or system.

The following examples will illustrate the simplest general
method of finding such solutions.

Ex. 1. Solve 7z + 12 y = 220 in positive integers.

Dividing by 7, the smaller coefficient, expressing improper fractions
as mixed numbers, and adding the proper fractions, we obtain

z+y+§-!7L3=sl. ' 1¢))

Since z and y are integers, 31 —z — y is an integer; hence the
fraction in (1) denotes an integer.

Multiplying this fraction by such a number as will make the coeffi-
cient of y divisible by the denominator with remainder 1 (which in this
case is 3), we have

.1_5_1/7;?=2y_1+1—;—2=aninteger.

Hence 7%2 = an integer = p, suppose.
Ly=Tp+2 @)
From (1) and (2), z=28-—-12p. (6))

~ Since z and y are positive integers, from (2) it follows that p >— 1,
and from (3) it follows that p < 3 ; hence

rp=0,1,2 4)
F.rom (2), (8), and (4), we obtain the three solutions
x=28, 16, 4;
y= 2, 9, 16.
Ex. 2. Solve in positive integers the system
z+y+2z=43, 1)
102+ 56y +22=220 '(2)}
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Eliminate z, 8z 4+ 8y =143,
or y+2x+¥=47. ®)
4x—4 z—1
= — = an integer.
3 z—1+4 3 an ger.
n2=1_ap integer = p, suppose.
S = 3p +1. (4)
From (3) and (4),. y=456-8p. (6)
From (1), (4), and (6), z=5p—38. ®)

From (6), p>0; and from (6), p < 6; hence
p=1 2, 8, 4, b.

Whence z= 4, 7,10, 13, 16;
y=8T, 29, 21, 18, &;
z= 2, 7,12, 17, 22.

Thus, the system has five positive integral solutions.

Exercise 127,

Solve in positive integers:

1. 3z+4+29y=151. 8. 12w—11y+4z=22,]

2. 32+ 8y=103. —4245y+2=1T7.

8. Ta4+12y =152, 9. 20w—21y=38,}

4. 132+ Ty =408, 3y+4z=34

5. 23z + 25y =915. 10. 5z —14y=11L

6. 13z + 11y =414, 11. 13w+11z=103,}

7. 6247 y+42=122, } Tz—5y=4.
Mae4+8y—62=145.) 12. 14z —11y=29.

13. A farmer buys horses at $ 111 a head, cows at $ 69,
and spends $ 2256. How many of each does he buy ?
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Ex. 2. Divide 16 4%+ 5a-1 —6a~3+ 6 by 1+ 2a-L,

Arrange in ascending powers of a.

16a®— 6a24+6a1+6|2a71+1

16a34 8a-? 8a2—-T7a7146
—14a2 4502
—14g"2—T7q"1
127146
12q-1 46

Ex. 3. Find the square root of

4z+2a;'z—4a:§—4zi+z§+a:‘.

Arrange in descending powers of z.

2:1:*-—

x§—4z‘3+ 2:::"+4:|;—llm*+z’;|.1:"—2:a:*+:15i
3
z

21} —4x*+2z*+4z

—4::& + 4z

2x*—4a:’+z} 21;; —-4ac%+aci

29:* —4z*+zi

Exercise 126,

Multiply :

1.

2
3.
4. 3at—dat—at by 3at+at—6at

at + advt + ot by ot — ol

. ot —abyt gt by o 4 4d.

3w*—5+8x‘} by 4xi+3w_*.

at +atot + ot by ot —afe? 4ot

b g, [N S by ot + o,

P Jp R B by ot 4o,

a§+b§+c§— b¥ct — dat — adpt by a}+bi+c*.
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9. w“+a:%+1 by w"‘+m-%+1.

10. }at— % abt  2patp — 3 bF by 1ot 430l
11. ¢+2¢*—T7 by 5—8¢*42¢

Divide:

12. 2lz+at+at+1 by 3ot 1.

13. 15a—3a*—2a¥+8a by 5at +4.

14. o8 —6pd —4bvt a7t —5 by st — 207,
15. 21a%* + 20 — 27 o — 26 a* by 3a*—b5.

16. sty 2 rahyt by odyt—1pahd

17. of + ab — alvot —ab + atvt + ¥ by ot + bt
18. a:*y‘%*+y¥w_} by a:}y'g + y*m'}.

19. gt —24at by at—at

20. 8¢ ™—8¢c*+5c¢*"—3¢ by 5¢c*—3c™
Find the square root of the following expressions:
21. 25at4+16 —30a—24at +494t.

22. 95— 1228 +10—45F o,

23. 42%0 24+ 122a '+ 25 4 24z 'a + 16 220>
24. 252% + 1wt — 202y — 2yz 14+ 9.

25. af —2q7 %% +2a§w§+a'gwl5*—2a§x‘}+a*.
26. 4a*+92"+28 —24 -4 —16 2t

27. 924 —182*Vy 4+ 15y + 2 — 6V + 2+ 4%
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362. The following examples are applications of the for-
mulas for products and quotients in Chapter IX., to binomials
whose terms involve fractional and negative exponents :

1)) @at -zt —@ady 1 3@ady - h
+3@ahy(—adyrr(—ahn (1)
=8at 124 +6 ade1 gt 2)
@  etabhet-h=elr-ohr=s-n § 122
(3) (Tz—9y1)(Tz+9y-1)=4922—81 y 2,
(4) (42—bz)(4z+321)=16274 (B2-1—b21)4z—162-3 § 123
=1623—-8—1527%,
®  @-nrat-n=[Eyp -6ty
=@hr+ @b+ by ab §129
s . g FRY
©® @it r=(etr @t +9)
=z-3 :r,* + 9.

Exercise 126.
Write the value of the following expressions:

1. @t4ohy 3. (m} 4 by 5. (rt—styp

2. @t—yh 4. (@—bhy 8. (2at—aty
7. (4 bh 11. (ot +o7Hy
8. (r*—3nht. 12. (ot -yt
9. GVa—}Vo) 18. (&t + 1)@t -1).
10. (at—2 b’c})‘. 14. (w* + y*‘) (az;i - y}).

15. (42843 a,"*) (4at—3 a,'*).
16. Bx—b5aMN@Bx+2a™).
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17.
18.
19.
20.
21.
22.

23. (ot 4a¥ + 1) @t — 1).
24. (4 —1)=(x141).
25. (2™ + 32) + (=" + 2).
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(ab — ¢ty (ab + 5 zY).
(z—9a)+ (=t +3ad).

(a* —16) + (a™= —4).

(x4 8) + (z*+2).
(=—c™)+(c*— c'*’).
1—-8a®%H+(1—2a™).

26. (2 — o) + (=t —gh.

21. (2 +9) + @+ Y.

28. (z—243 y*) +@t-3 y*).

Solve the following equations, each of which is, or can
be, put in quadratic form (§ 300):

29.
30.

31.
32.

33.

34.
35.
36.
317.
38.
39.
40.
41.
42.

2 —_221=8.
942 4=102"2
rz—82t +12=0.

ot — 2621 —27=0.
4 6=5ar
Ba%—ar — 220,
a:'}+3a:'}=4.

3at —3a1=38.
2a:*+2a:'*=5.
6at=7at — 2271
4ot —3aF=4

et —2at+1=0.

6Vr=>5x%—13.
1482t +9V@=0.

Ans.
Ans.

Ans.
Ans.

Ans.

Ans.
Ans.
Ans.
Ans.
Ans.
Ans.
Ans.
Ans.
Ans.

1/4, —1/2.
+1, +1/3.

4, 36.

81.

2", 3%,

1, 2™,

1, 27.

9.

4,1/4.

4/9,1/4.

243/32, —1/32.

1, (-1+V-=-3)/2
1/9.

-1, —1/32.
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Proof. If y=z and z = a, then, by § 366, y=a. (6]
But by hypothesis, y=b. @
By (1), (2), and § 363, b=a '
368. Ir 1t (v) =0 and 1t (w) = 0, then 1t (vw) = 0.

Proof. If v=0 and w=0, vw approaches nearer to 0
than either v or w; but vw cannot equal 0, since neither »
nor w can.

Hence if v =0 and w=0, vw = 0.

369, The limit of the variable sum of two or more variables
is the sum of their limits.

That is, if x=a,y=b z=c, -,
then x+y+z+¢---é-a+6;|-c+..-.

Proof. Let v,=2—a, =y—b, v,=2—¢, *+}
then @+y+2z+ )—(@+b+c+ )=t + v+ V54

Now, however small a constant k may be, each one of the
n variables v,, vy, v5, +-- can become arithmetically less than
k/n; hence their sum can become arithmetically less than k.
But, since 4 y + 2 -+ +-- is variable, v; + v; + v + +-- cannot
reach and remain zero. Hence v, 4 v3 4+ v3 4 -+ =0.

Hence z4yY+z4-=a+b4c4 - § 362
870. The limit of the variable product of two or more vari-
ables is the product of their limits.
That is, lt(ayz---) =1t (x)-16(y) -1t (2) -
Proof. Let z=a, y=20,
and let v=x—a, w=y—b;

then r=a+v, y=b+4w.
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Hence zy=ab + aw + dv 4 vw.

o 1t (zy) = ab + 1t (aw + by + vw) §§ 367, 364
=ab +alt(w) + b1t (v) +1t(vw) §§ 369, 365
=ab § 368
= 1t(2) - 1t(y). Q@)

By (1) lo(oy- am) = 16(ay) - 1o(ow)
=1t (x) - 1t (y) « 1t (%) « 1t (w):

And so on for any number of variables.

371, The limit of the variable gquotient of two variables ¢s
the quotient of their limits, when the limit of the divisor ¢8 not
zero.

That is, 1t (x/y) = 1t (x)/1t (y), when 1t(y) w 0.
"Proof. Let 2=afy, or w=yz;

then 16 (2) = 1t (e /y), @
and 1t (x) = 1t (y2) = 1t (y) + 1t (a). &)

Dividing (2) by 1t (y) when 1t (y) # 0, we obtain
1t(2) = 1t () /1t (y), when lt(y) # 0. ®)

Equating the two values of 1t(2) in (1) and (3), we have
1t(z/y) = 1t(x) /1t (y), when 1t (y) # 0.

xyz\ _ lt(zyz)
Ex. 1 (m) = It(cow) $orl
2 16(2) - 1(y) - 1t(e) § 870

BB TOBRIGN

372. Lt (x") =[1t(x)]", wheren isa positive integer.
Proof. lt(z)=1t(z-x.z. ton factors) by notation
= It (2) - 1t (£) ++- to n factors § 870
=[lt ()]~ by notation
Eg., i z=a, ()= o, () = o, W()= oL,
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Exercise 128.
Ifex=a y=b 2=c, u=e v=0, find:
1. lt(azx). 4. It (o' + 2. 7. W@/

2. lt(cz+av). 5. lt(z*— o). 8. 1t(22/v°).
3. lt(ey—Teu). 6. lt(z®—2ud). 9. lt(valy/z").
10. 1t (2% + ma®? + nv). 12. 1t (2% + maz® + nav®).

11. lt(:_%). 13. 1t<“'7?{'+2_;:).

378. When the quotient of two variables or the product or
sum of two or more variables is equal to a constant, the
quotient, product, or sum of their limits i3 equal to the same
constant.

Proof. (i) Let 2y = m; then zyz = mz.

We multiply by 2 to make the members variable.

Slt@)-lt@) -1t (@)=m-1t(2). §§ 870, 366

Divide by 1t (2), 1t(z)-1t(y)=m.

(ii) Let z+y=m; then z=my.

St @)=1t(my) =m - 1t ().
s 1t (2)+ 1t (y) = m, when It (y)5=0.
(iif) Let T4+ Y+24 e =m. )
y+z+e=m—2
SRR+ e =m =1t ().
S@E) @)+ 1 (R) e =m.

374, Lt(e/y) =e/1t(y), when 1t (y) # 0.

Proof. Let z=c/y; then zy =c.

Hence It (2) =1t (¢/¥), ¢))
and 1t (2) - 1t (y)=c. § 370

Hence 1t (2) = ¢/1t (y), when It (y)== 0. (2)

From (1) and (2), It (c/y)=c/lt (¥), when 1t (y)= 0.
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876, Lt (xg) = [_lt(x)]%'.

Proof. Let ) z= ao;'l; then 2n = 2™, (¢))

From (1), t(z)=1t (a::"), (2)
and [t (2)]* = [1t ()] §§ 361, 872

Hence It (2)= [t (=) ]E. ®

From (2), (3), It @y =l (z)ﬁ.

Ex. 1t @l =[1t ()] = ot when z = a.

376. An infinitesimal is a variable whose limit is zero.

Thus, the difference between a variable and its limit is
an infinitesimal.

In approaching its limit zero, an infinitesimal becomes indefinitely
small and continually smaller, but it never equals zero. A small
quantity becomes an infinitesimal when it begins to approach zero as
its limit rather than when it reaches any particular degree of small-

ness. A quantity, however small, which does not approach zero as
its limit is not an infinitesimal.

377. An infinite is a variable which under its law of -
change can exceed any constant however great.
Thus, the reciprocal of an infinitesimal is an infinite.

E.g., if z =0, 1/z can exceed any constant number however great ;
thus, since 1/(0.1*) =10, we have

when z=.1, 110, /1100, 11000 110000, ...,
1/z = 10, 1010, 10i%, 101000, 1010000, ...,

The general symbol for an arithmetic infinite is o0 ; and
2 =00 is read ‘x increases without limit,’ or ¢« is infinite.
A positive infinite is denoted by + oo, and a negative infinite
by — o, and # = — o is read ¢« is a negative infinite.’

An infinite does not approach a limit, but increases
arithmetically without limit.
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378. Any number which is neither an infinitesimal nor
an infinite is called a finite number. All the numbers con-
sidered prior to this chapter are finite numbers.

379, Any finite number, not zero, divided by an infini-
tesimal is an infinite; and conversely, any finite number,
not zero, divided by an infinite is an infinitesimal.

That is, when 2 =0, a/r = o (where a + 0).

And conversely, when =0, a/z=0.

. 423 —322+ 5
Ex, Find1t (==——=2= T~ he = o,
i (7zs+4x_8)wenz ®,

T +42—8 1+4/23 — 85

(428 — 322 + B\ _ It (4—8/z+5/2%)
1t = 367,83
(7x3+4z—8 It (T+4/23—8/2%) 5 7

=4/1. §§ 364, 360, 379

Exercise 120,

Find the limit of each of the following expressions,
when z=o0:

1 Ta'—38z s, B2—8H(Ez+4)
52249 92°+8z—11
g, 0P—brte 5. 8+24)(22—1T)
ma® 4 ca® + nx G2+7)(T+92)
3. ﬁ?’”’_—ll’. 6. 3+2 “’—5.
«*+9 422-9)(1+=
If #=a, y=10, z=c, find the value of:
7. abe, if zyz =m. 10. Lt (m/a® + n/y).
8. ab/ec, if xy/z=n. 11. Lt (n/z" + h/y").

9. a®/d, if o¥/z=h. 12. Lt (a/z"+ b™/y™).

-




\
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13. Lt (zd). 14. Lt (ztyd). 15. Lt (Vayz).
. o
16. Lt (M). 17. Lt <@ — m_\/w£>

' xy* — nzg' z* nv a2
380. Fractions which assume the form 0/0.

Substituting 1 for z in the fraction (2 — 1) /(x — 1), we have
2—-1_1-1_0"

z—1 1-1 0

That is, by the method in § 12 we fail to obtain any definite value
for the fraction (22 — 1) /(x — 1), whenz = 1.

But for any value of z other than 1, we have

@-1f(x—-1)=2z+1. 1)
Hence (1) holds true when z = 1.
PR v | e
o, Jmit ("x——_ : )E Limit x4 1) =2. @

That is, 2 is the limit which the fraction approaches when z = 1.

The first member of (2) is read ‘the limit of (22— 1)/(z—1),
when z = 1.’

The example above suggests the following definition :

The value of an expression for any particular value of its
variable is the limit which the expression approaches when
the variable approaches this particular value as its limit.

This definition applies to any expression, but we shall
use it only when the simpler one in § 12 fails.

Ex. Find the value of (22 + 2 —2)/(22—1), whenz =1.

Putting 1 for z in this fraction, we obtain the form 0/0.

Hence to find the value of this fraction, when z = 1, we must find
its limit when 2 = 1.

For values of z other than 1, we have

P2+r—2_(x—D(@E+2)_z+2
22—-1  (—-1D(@+1) z+1
. limit (22 + 2 — 2\ _ limit (2 +2
=1\ 2-1 )JTrx=1\gz+1
lt(x+2)_3

Py

Tl(@+1) 2
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Ience the value of the fraction when z =1 is 3/2.
Note that we cannot apply § 371 to the given fraction, for the
limit of its divisor is 0 when z = 1.

Observe that the indeterminate form 0/0 arises here by
reason of one condition ; viz. ¥ = some particular value. In
any such case an indeterminate form simply indicates that
the method of evaluation by substitution (§ 12) fails, and
that the more general method by limits must be used.

Exercise 130.

Find the value of each of the following expressions:

1. i:;, when 2=1. ° 5. g%i—, when z=1.
2. %Bj—:—i, when z=—1. 6. :::Z:, when z=a.
3. 'x'_gf_:x:— 6, when =2, 7. 2—:——;“, when z=a.
4. fj;_f;l;_lg’ when 2=—3. 8. :’;IZ:, when 2=—a.
9. M, when 2 =a.
(@—ayt .
10. w’+azg—_3a::—-3a, when z=—a.

381, a/0, or absolute infinity. The expression a/0, read ‘ @ by
zero,’ frequently occurs in mathematics, and the question arises ¢ what
does it mean?’ By § 853, a/0 must symbolize that of which no part
can be expressed by any number however large; hence it symbolizes
that which transcends all number, or absolute infinity, of which we
can have no positive idea.

The expression ¢/0 is commonly denoted by the symbol @. When
this notation is adopted, this meaning of co must be clearly distinguished
from that in § 877, where o denotes an infinite, or a variable which
increases without limit.

In this book o never denotes a/0.
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382 Certain combinations of 0 and a/0; as
(a/0)+(a/0), (a/f0) -0, a/0 - a/o, etc.,

produce additional indeterminate forms. But any expression which
assumes any one of these forms can be reduced to an identical expres-
sion which for the same values of its variables will assume the funda-
mental form 0/0. '

E.g., we have the identities,

(afz)+(afy)=y/x (¢))
(a/z) -y=ay/= (2)
afe=afy=a(y — z)/(xy). ®

If x=0 and y =0, (1), (2), and (3) become
(a/0)+(a/0)=0/0

(a/0) - 0=0/0
a/0—a/0=0/0.

If in the identity w=an/1n
we put = 0, we obtain 00=0/0.

That is, 0° is an indeterminate form.

LAWS OF INCOMMENSURABLE NUMBERS

383. The laws, already proved for commensurable num-
bers, are, by the theory of limits, easily proved for incom-
mensurable numbers.

384. Proof of the fundamental laws. ,

Let a, b, ¢ be any incommensurable constant numbers,
and let 2, y, z be commensurable variable numbers such that
r=a, y=>b, z=c.

Proof of (4). z+y=y+2 ' §36

o 16(@) +16(y) =16(y) + 16();  §§ 367, 369
that is, a+b=b+a
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Proof of (4". Y = y. § 49
« It ()1t (y) = 1t (y) 1t ()3 §§ 367, 370
that is, a-b=b-a.
Proof of (C). @+y)z=x2+yz § 60
=~ [16(@) + 16(y) )16 (=) = 16 (@) 16(2) + 1t (y)16(2); §§ 369, 370
that is, (a+d)e=ac+ be.

Laws (B), (B'), and (C") follow from laws (4), (4", and
(0C), as in §§ 36, 49, and 88.

386. If x is commensurable and x = 0, then a* =1, when
a+1or0.

E.g., giving to z the successive values }, }, , -+, and finding the
corresponding values of 16%, we obtain the results below :

When z=4, % & o & 0 e sk

16= =4, 2, 1.4, 1.19, 1.09, 1.04, 1.019, 1.009 ....

Observe that each value of 16+ is the square root of the preceding
value. .

From this table of values it is evident that when x =0, 16~ will
approach indefinitely near and continually nearer 1; but it cannot
reach 1, since z cannot reach 0, and 16# =1, when, and only when,
z=0.

386. Meaning of am, m incommensurable.
Let r<<m<z,

where  and # are commensurable, and let a >1; then in
harmony with the meaning of commensurable exponents
we assume o™ to denote a number such that

< am < an (6))
Let z=m, and z=1m;
then Itz —2) =1t(2) — 1t (x) = 0.

Hence by § 385, It(ar=) =1. . 2)
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Now a—a =a*(a*—1)
< 1t (a* — a®) =1t (a®)[1t () — 1] §§ 370, 364
=lt(@)(1-1)=0. by (2)
From (1), a'—a* > a™ — a*;
hence, as a*—a*=0, a®—a*=0;

< a”=1t(a*) when 2 = m.

That is, any base a with an incommensurable exponent m
denotes the limit of a* when x = m.

387. Proof of laws of exponents I, II, IV, V.

Let m and » be any incommensurable constant numbers,
and let # and y be commensurable variable numbers such
that z =m, y =n.

Proof of I oo = a™, § 345
Hence. 1t (a*a”) = 1t (@**7) = @™+ @
But It (a7a*) = 1t (a®) - 1t (@”) = a™a™ @)
From (1) and (2), a™a"=a™" Law I

Proof of II. By law I we have

am"a" = a™,

Hence by § 32 a™ " =a"/a" Law II
Proof of IV. a*b* = (ab)? § 348
Hence It (a*b®) = 1t [(ad)*] = (ad)™ ®)
But It (a°b°) = 1t(a®) - 16 (b*) = a™ - b™ 6)
From (5) and (6), (ab)™=a™d™ Law IV
Proof of V. a* /b = (a/b)~ § 348
Hence - 1t (a*/b%) =1t [(a/b)*] = (a/b)™. )
But 1t (a*/b%) =1t(a®) /1t (V%) = a™/b™ ®

From (7) and (8), (a/b)"=a™/b™ Law V
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388. To prove law III for incommensurable exponents
we need the following theorem of limits:

Ify and z are commensurable and m and ¢ are incommen-
surable; then, when y =m and z=¢, 2V = c™.

Proof. For all values of 2z (except 0 and 1), and hence
for z variable, by § 386, we have

? —2=0, when y=m. @
By § 375, #— =0, when 2= ¢. ©
From (1) and (2), (* — 2™) + (z" —¢*) = 0;
that is, 2 —c*=0, when y=m and z2=c.
Hence #=c™ when y=m and z=c. 3)

Proof of III. Using the same notation as in § 387, we
have
(@®y = a™.
Hence It [(a®)] = It (a™) = a™. “
But by (3), I6[(@*)} = [1t (@) 1" = (™)~ ®)
From (4) and (5), (a™)"=a™.

From these laws for incommensurable numbers the other
laws follow by the proofs already given for commensurable
numbers.

VARIATION.

389, Two variables are often so related that the value of
one depends upon the value of the other.

E.g., the distance a train runs at a given speed depends upon the
time it runs, and this distance increases when the time increases.

The length of an elastic cord depends upon its tension, and this
iength varies when the tension varies.

If y = b 27, the value of y depends upon the value of z, and y varies
when z varies.

We shall here consider only the simplest kinds of variation.
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390. Direct variation. When the ratio of two variables
is a constant, either variable is said to vary directly as the
other.

The symbol o, read ¢ varies directly as,’ is called the sym-
bol of direct variation. When placed between two variables
it denotes that their ratio is some constant.

The word ¢ directly’ is sometimes omitted.

E.g., yxz, read ‘y varies directly as z,” denotes that y/z =m,
where m is some constant.

Again, if y =82, y/x=38; hence, yxz or zxy.

391. If one variable varies directly as another, either vari-
able is a constant multiple of the other; and conversely.

Proof. If yxz, y/e=m; .. y=mw, or x=1/m)y.

Conversely, if y=mx, y/z=m; .. ycz, or zocy.

E.g., the area of a rectangle = base into altitude,

Hence if the altitude is constant, the area o the base,
And if the base is constant, the area o the altitude.

392, If yocx, and if o/, ¥ and 2", y'" are any two sets of
corresponding values of « and y, then
Yo' =y':a". @
Proof. If yxa, y'/e' =m and y"/a" =m. )]
From the equal ratios in (2), we have the proportion (1).
Conversely, if y':#'=y":2", y=mx and yocz.

393, Inverse variation. One variable is said to wary in-
versely as another when the first varies as the reciprocal of
the second.

That is, y varies inversely as x, when yoc1/x.

394, If one variable varies inversely as another, the product
of the two variables is a constant; and conversely.

Proof. 1f yel/z, y=m(1/x); .. yx=m.

Conversely, if yr=m, y=m(1/x); .. yocl/z.

E.g., if yz =8, y varies inversely as x.
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395. Joint variation. One variable is said to vary as two
others jointly when it varies as the product of the two.

That is, y varies as x aud z jointly, when y «<(xZ), or
y=m(xz).

E.g., it W = the amount of work done by M men in D days ; then,

if M and D both vary, WeMxD;
if M is constant, WxD; .
if D is constant, W« M.

One variable is said to vary directly as a second, and in-
versely a8 a third, when it varies as the product of the
second into the reciprocal of the third.

That is, y varies directly as #, and inversely as z, when

yxz(1/z), or y=mz(1/2).
Eg.,it yz=82, y=382(1 2); hence y=z(1/2).

396. In each of the preceding cases of variation, the
value of the constant, m, can be found when any set of
corresponding values of the variables is known.

Ex. 1. Given y«xz, and y =6 when z =2; find the constant ratio
of y to =.

Since y xz, y = mz, where m is some constant. (¢))

Since y =6, when z =2, from (1) we have

6=2m, or m=8=y/z.

Lx. 8. The volume, V, of a pyramid varies jointly as its height,
H, and the area of its base, B. When the area of the base is 60
square feet and the height 14 feet, the volume is 280 cubic feet. Find
the area of the base of a pyramid whose volume is 390 cubic feet, and
whose height is 26 feet.

Since V« BH, V = mBH, where m is some constant. (¢))

Substituting the given values of ¥, B, H, in (1), we have

280 =m x 60 x 14, or m = ¢.
s V=%4BH.
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Hence, when V =390, and 4 = 26, we have
390 = } B x 26.
~ B =45, the number of sq. ft. in base.

397. The simplest way to treat wariations is to convert
them into equations.
Ex. If uxy and y«cz, prove that uxa.
Since uxcy and y«xz, by § 391 we have
u = gy and y = bz, where g and b are some constants.
Sou=adbr. o uxz. § 390

398. If uxx when y is constant, and u xy when x i3 con-
stant, then u o xy when x and y both vary.

Let «/, y', ' be one set and z', ", u'' another set of cor-
responding values of z, 9, z, when all change together.

Let = change from z' to z', y remaining constant, and
suppose that in consequence u changes from u' to u,; then
since u o« when y is constant, by § 392 we have

u:ie =u a2, @
Now let y change from %' to y", # remaining constant;
then » will change from w, to »"; hence as wxy when
is constant, we have
u:y =o'y &)
Multiplying (1) by (2), and dividing the antecedents by
u,, we have
ul . wlyl _— u'" . zﬂyﬂ.
Hence U Y. § 392
Similarly it may be proved that, if « varies as each one
of the three variables =, y, 2 when the other two are con-
stant, then u cczyz when they all change; and so on.

E.g., let A denote the area of a triangle, B its base, and H its
altitude ; then
A« B, when H is constant,

and A« H, when B is constant ;
hence A« BH, when B and H both change.
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Hxercise 131.

1. If z varies directly as y, and y=7 when z =18,
find # when y=21.

2. If y varies inversely as , and y=4 when z=15;
find y when z=12.

8. If « varies jointly as y and 2,and z=6 when y=2
and 2=2; find z when y=5,2="17.

4. If ey and z'cy, then 2zccy.

5. If zx1-+y, and y=4 when z=15; find y when
z=6.

6. If z varies directly as y and inversely as 2, and
=10 when y=15 and 2=6; find z when y=8, z2=2.

7. If z varies directly as y and inversely as 2, and
2=14 when y=10 and z=14; find z when =49, y=45.

8. If 1l +y, and y«1l-+2, prove zua.

9. If 824+ Tyx32+13y, and y=3 when z=25;
find the equation between z and y.

10. If the cube of x varies as the square of y, and if
=3 when y=>5; find the equation between z and y.

11. If the area of a circle varies as the square of its
radius, and if the area of a circle is 154 square feet when
the radius is 7 feet; find the area of a circle whose radius
is 10 feet 6 inches.

12. The velocity of a falling body varies directly as the
time during which it _has fallen from rest, and the velocity
at the end of 2 seconds is 64. Find the velocity at the end
of 5 seconds.

13. The volume of a sphere varies directly as the cube
of its radius, and the volume of a sphere whose radius is
1 foot is 4.188 cubic feet. Find the volume of a sphere
whose radius is 3 feet.
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14. The pressure of a gas varies jointly as its density
and its absolute temperature; also when the density is 1
and the temperature 300, the pressure is 15. Find the
pressure when the density is 3 and the temperature is 320.

15. The volume of gas varies directly as the absolute
temperature and inversely as the pressure. Also when the
pressure is 15 and the temperature 280, the volume is 1
cubic foot. Find the volume when the pressure is 20 and
the temperature 300.

16. The distance through which a heavy body will fall
from rest varies directly as the square of the time, and a
body will fall through 144 feet in 3 seconds. Find how far
it will fall in 2 seconds.

17. The pressure of wind on a plane surface varies
jointly as the area of the surface and the square of the
wind’s velocity. The pressure on a square foot is 1 pound
when the wind is moving at the rate of 15 miles per hour.
Find the velocity of the wind when the pressure on a
square yard is 16 pounds.

18. The volume of a right circular cone varies jointly as
its height and the square of the radius of its base; and the
volume of a cone 7 feet high with a base whose radius is
3 feet is 66 cubic feet. Find the volume of a cone 9 feet
high with a base whose radius is 14 feet.



CHAPTER XXIX
THE PROGRESSIONS

389, A series is a succession of terms whose values are
determined by some one law.

A series is said to be finite or infinite according as the
number of its terms is limited or unlimited. ‘

In this chapter we shall consider only the three forms of
series which are called the arithmetic, the geometric, and the
harmonic progressions.

ARITHMETIC PROGRESSIONS.

400. An arithmetic progression (A.P.) is a series in which
the difference between any term (after the first) and the pre-
ceding term is the same throughout the series.

The difference, which can be either positive or negative,
is called the common différence.

E.g., the series
2, 5 8 11, 14, 17, 20, 23, .., )
and 7, 5 3, 1, -1, _3’ -5, —7’ °*y (2)

are arithmetic progressions.
In series (1) the common difference is 3, and in (2) itis — 2.
If in (2) we add — 2 to any term, we obtain the next term.

401. The nth term. Let d denote the common difference
in an A. P, and a the first term ; then, by definition,
the second term = a + d,
the third term =a+4 2d,

and the nth term =a + (n —1)d. @
380 -
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E.g.,if the first term of an A. P. is 4, and the common difference

is 6,
the ninth term =44+(9-1)56=44,

and the twenty-first term = 4 + (21 — 1)6 = 104.

Ex. The fourth and fifty-fourth terms of an A. P. are, respectively,
64 and — 61. Find the twenty-seventh term.

Here 64 = the fourth term =a+3d, } @
a
and — 61 = the fifty-fourth term = a + 563 d.

Solving system (a), we find @ =71}, d=—56/2.

.. the twenty-seventh term = a + 26 d = 6}.

402. When three numbers, a, b, ¢, are in A. P., the middle
term b is called the arithmetic mean of the other two terms
a and c.

403. If a, b, c are in A.P., by definition we have
b—a=c—b.

b= (a + c)/2.

That is, the arithmetic mean of any twe numbers is half
their sum.

404. All the terms between any two terms of an A.P.
may be called the arithmetic means of the two terms.

The following example illustrates how any number of
arithmetic means can be inserted between any two numbers.

Ex. Insert 9 arithmetic means between 50 and 80.
Since there are 9 arithmetic means, 80 must be the eleventh term
60 being the first ; hence, by definition, we have

the eleventh term = 50 4 104 = 80.
Hence d = 3, and the required series is
60, 63, 66, 69, 62, 65, 68, 71, 74, 77, 80.
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405. Sum of n terms. Let ! denote the nth term, and 8
the sum of n terms of an A.P.; then

S=a+(@+d)+@+2d)++(0-D+

oo  S=l4+0—d)+(@—2d)+ - +(a+d) + a.
Adding the corresponding terms, we have

28=@+0)+(@+0)+(a+1)+ - ton terms.

s 8=4n(@+1). @
From § 401,  I=a+(n—1)d. @
o 8S=4nf{2a+ (n —1)d}. A 6))

If any three of the five numbers a, d, [, n, S are given,
the other two can be found from equations (1) and (2), or
from (3) and (2).

Ex. 1. Find the sum of 20 terms of the A. P.

—B5—143 4T+ 114 e,

Here a=-5,d=4, n=20.

S 8=inf2a+(n-1)d}
=10{—10 + 19 x 4}

= 660.
Ex. 2. Find the sum of the first » consecutive odd numbers,
1, 3, 6 ..
Here ea=1,d=2, n=n.

o 8=4nf{2a+ (n—-1)d}
=in2+(m—-1)2}
=n2 .
Hence the sum of n consecutive odd numbers, beginning with 1,
isn?,

Ex. 3. The first term of an A. P, is 6, and the sum of 26 terms is
25. Find the common difference.
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Here ¢ =6, § =26, n = 25 ; hence from (3) of § 406 we have
26 =1} x26{12 + 244}
s d=—5/12.
Ex. 4. How many terms must be taken of the series 11, 12, 13,
««« to make 410 ?
Here ¢ =11, d =1, §=410; hence from (3) of § 405 we have
410 =} {22 +(n — 1)}. )
o n'=20, or —41.
Since the number of terms must be an arithmetic whole ;mmber,
the number of terms is 20. See § 297.
. Ex. 5. How many terms must be taken of the series — 16, — 15,
— 14, ... to make — 100?
Herea =—16,d =1, § =— 100 ; hence we have
—100=4n{-32+(n— 1)}
<. n =8, or 25,

Hence the number of terms is 8 or 25.

The sum of the 17 terms following the first 8 must therefore be
zero. These 17 terms are —8, — 7, — ..., 7, 8, and their sum is
evidently zero. °

Exercise 132.

1. Find the twenty-seventh and forty-first terms in the
series 5, 11, 17, ...,

2. Find the seventeenth and fifty-fourth terms in the
series 10, 114, 13, .-..

3. Find the twentieth and thirteenth terms in the series
-3, =2, —1, ...

4. If the twelfth term of an A.P. is 15, and the twen.
tieth term is 25, what is the common difference ?

6. The seventh term of an A.P. is 5, and the twelfth
term is 30. Find the common difference.

8. The first term of an A.P. is 7, and its third term is
13. Find the tenth term.
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7.
10. Find the twelfth term.

8.

is 7.

9.
10.
11.
12.
13.
14.

15.
32, and the sum of the third and eighth is 48. Find the
first term.

16.
is 187, and the sum of the seventh and eighth terms is 147.
Find the second termn.

ELEMENTS OF ALGEBRA

The first term of an A.P. is 20, and its sixth term is

The seventh term of an A.P. is 5, and the fifth term
Find the twelfth term.

Which term of the series 5, 8, 11, -.. is 652
Which term of the series , 4, 3, --- i8 18?
Insert 6 arithmetical means between 8 and 29. |
Insert 7 arithmetical means between 269 and 295. ’
Insert 15 arithmetical means between 67 and 43. |
If a, b, ¢, d are in A.P., prove that a 4+d =0 +c.

The sum of the second and fifth terms of an A. P. is

-

The sum of the third and fourth terms of an A. P.

Find the sum of each of the foliowing series:

17.
18.
19.
20.
21.
22.

5,9, 13, .-+ to 19 terms.

1, 2}, 3}, -+- to 12 terms.
—5, —1, 3, .- to 20 terms.
44 oo to 7 terms.

10, 22, 28, ... to 7 terms.
1, -+ to15 terms.

How many terms must be taken of :

23.
24.
25.

The series 42, 39, 36, --- to make 315?
The series 15, 12, 9, ... to make 45 ?
The series —8, — 7, — 6, --- to make 42 ?
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26. Find the sum of all the numbers between 100 and
500 which are divisible by 3.

27. Find the sum of all the odd numbers botwoen 100
and 200.

28. The sum of 10 terms of an arithmetioal series is 143,
and the sum of its fourth and ninth terms is § times the
third term. Determine the series.

29. Divide 80 into 4 parts which are in A. P, and which
are such that the product of the first and fourth parts is §
of the product of the second and third.

30. Find 4 numbers in A. P., such that the sum of their
squares shall be 120, and that the product of the first and
last shall be less than the produet of the other two by 8,

31. If a body falling to the earth descends a feet the
first second, 3 a the second, & @ the third, and so on; (1) how
far will it fall during the tth second? (2) how fur will it
fall in ¢ seconds ? Ans, (2t —1)a, at’,

32. How. many strokes does a common clock make in 12
hours ?

33. A debt can be discharged in a year by paying 1 the
first week, $ 3 the second week, $5 the third, and so on,
Find the last payment and the amount of the debt.

34. One hundred apples are placed on the ground at the
distance of a yard from one another. How far will a person
travel, who shall bring them, one by one, to a basket, placed
at a distance of a yard from the first apple ?

35. Two boys A and B set out at the same time, to meet
each other, from two places 343 miles apart, their daily
journeys being in A.P.; A’s common difference being an
increase of two miles, and B’s a decrease of 5 miles, On
the day at the end of which they met, each travelled exactly
20 miles. Find the duration of each journey,
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GEOMETRIC PROGRESSIONS.

406. A geometric progression (G.P.) is a series in which
the ratio of any term (after the first) to the precedmg term
is the same throughout the series.

This ratio, which can be either positive or negative, is
called the common ratio.

E.g., the series
2, 6, 18, b4, 162, ..,
8, 4, 2, 1, d ey
or L -1, 3 -4 P e

is a geometric progression (G.P.). In the first series, the common
ratio is 8 ; in the second series it is 1/2; and in the last it is — 2/3.

If we mult.iply any term in either series by the common ratio, the
product will be the next term of that series.

407. The nth term. Let r denote the common ratio, and
a the first term of any G. P.; then by definition
the second term = ar,
the third term = ar?,
and the nth term = ar~. @
E.g., if the first term of a G. P. is 8, and the common ratio is 1/2,
the fifth term = 8 x (1/2)51 = 1/2,
and the ninth term =8 x (1/2)%-1=1/32.

Ex. The sixth term of a G. P. is 166, and the elghth term is 7644.
Find the seventh term.

Here 156 = the sixth term = ar$, (¢))
and 7644 = eighth term = ar". @)
Divide (2) by (1), 49 =12 3)
Sr=4T 4

But the seventh term = sixth term x

=166 (+ 7)=+1092.
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408. Sum of n terms. Let S denote the sum of n terms;

then
S=a+ar+a’+ - + ar*? 4 ar-?

—a(1+r+r’+r"+ ...+rﬂ—3+rn—l)

1 —
1 § 129
Hence 8= QQ—2 )
Let ! denote the nth term; then from § 407
l=ar €3]
From (1) and (2)
§=2— rl. ®)

1—7»

If any three of the five numbers a, [, n, r, s, are known,
the other two may be found from equations (1) and (2),
or from (2) and (3).

Ex. Sum the series 6, — 18, 54, ... to 6 terms.

Here ¢ =6, r=—18 +6=—3, n=6.

81 —(—8)%
1—(-8)

41—
=—1092.

From (1), S=

409. When three numbers, a, b, ¢, are in G. P., the middle
term-b is called the geometric mean of the other two terms
a and c.

410. If a, b, c are in G. P., by § 406, we have
c:b=b:a. .. b=Vac

~ That is, the geometric mean of any two numbers is the mean
proportional between them. .
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411. All the terms between any two terms of a G. P. may
be called the geometric means of the two terms.

412. To insert m geometric means between a and b.

Calling a the first term, b will be the (m + 2)th term;
hence by (1) of § 407, we have

b =art,
wr="Yb+a 1)

Hence the m means required are ar, ar’, --- ar™, in which
r has the value given in (1).

Ex. Insert 6 geometric means between 66 and — 7/16.

Here a=066, b=—7/16, and m +1=71.
o1 ! 1 1
o = — 66=‘J—-——=——.
r=y T Fxo o 2
Hence r =— 1/2, and the 6 means required are

—28, 14, — 17, /2, —T/4, 1/8.

Exercise 133.

Find the last term in the following series:

1. 2,4,8,..- to 9 terms. 2. 2, 3, 4}, --- to 6 terms.
3. 3, — 3% 3% .- to 2n terms.

4. z,1,1/x, ... to 30 terms.

5. The first term of a G. P. is 3, and the third term is 4.
Find the fifth term.

6. The third term of a G. P.is 1, and the sixth term
is —1/8. Find the tenth term.

7. The fourth term of a G. P.is 0.016, and the seventh
term is 0.000128. Find the first term.

8. The fourth term of a G.P.is1/18, and the seventh
term is —1/486. TFind the sixth term.

9. Insert 3 geometric means between 486 and 6.
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10. Insert 4 geometric means between 1/8 and 128,
11. Insert 5 geometric means between 3 and 0.000192,
12. Insert 4 geometric means between ¢*=* and a-%*,

Find the sum of the following series:
13. 64, 32, 16, -+ to 10 terms. :
14. 8.1,2.7,0.9, «.- to 7 terms.

15. 3, —1,1/3, - to 6 terms.

18. 1/2,1/8,2/9, --- to 7 terms.

17. —2/5,1/2, —5/8, «++ to 6 terms.
18. 2, — 4,8, .- to 2p terms.

413. When <1 arithmetically, the successive torms of
a G.P. become smaller and smaller arithmetically, and the
G. P. is said to be a decreasing progression.

414, The limit of the sum of an infinite number of terms of
a decreasing @. P. is i

-r
Proof. From (1) of § 408, we have
__a _ _ar
8= 1—7» 1—7r ) @

Now if r<1 arithmetically, and the number of terms,
or n, is increased without limit, then

. . .
™=0. i P 0.

Hence from (1), by § 364, we obtain
=_%2_, p

The limit of the sum of an infinite number of terms of &
series is often called the sum of the series.
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E.g., if a =2 and r =1/2, we have the decreasing G. P.,
2,1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, ..., 1)
The sum of an infinite number of terms of this series approaches 4
as its limit. For suppose that we bisect & line four inches long, and
take away one of the parts ; then bisect the remainder, and take away
one of the parts ; and continue this process without limit. It is evi-
dent that the part remaining will approach zero as its limit, and the
sum of the successive parts taken away will approach four inches as
its limit. But the numbers of inches in the successive parts taken
away will be the terms of series (1). Hence the sum of an infinite
number of terms of that series approaches 4 as its limit.

Ex. 1. Find the sum of the series 1, 1/2, 1/4, «..

Here a=1,r=1/2
1
1 ==,
From (2), t (S) 1=1/2 2
Ex. 2. Find the sum of the series 9, — 3, 1,
Here a=9, r=-1/8.
9 27
I Ty 3
From (2), == =
Ex. 3. Express 0.428 as a common fraction.
33 — -4 .28 28,
0.423 = 0.4282828 ... = o5 10T it
23 , 28 _23 1
L9 4 29 L 49 1——
Now, T It = ( 102)
28 10023
108 99 990

K 0.423 = 1‘0- + #0’ = m

Ex. 4. Find the infinite G. P. whose sum is 18, and whose second
term is — 8.
Here ar =-—8, (¢5)

a
=18.
and T €))

Divide (1) by (2), r(l—r)y=—4/9.
3 —r—4/9=0.
sor=-1/3 or 4/3.
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Only the value —1/3 is admissible for r, since the series is a
decreasing one.
From (1), a=—-8+(-1/3)=24.

Hence the series is 24, — 8, 8/3, —8/9, ...

Exercise 134.

Find the sum of each of the following series:

1. 9, 6, 4, .. 4. § —1, § -
2' i" _}’ ‘&', eee, b. 0-9, 0.03, 0.%1, oo,
. b %A 6. 0.8, —04, 0.2, ...

Express as a common fraction :
7. 03. 8. 016. 9. 0.24. 10. 0.378. 11. 0.037.

12. Find the infinite G.P. whose sum is 4, and whose
second term is §.

13. Find the infinite G.P. whose sum is 9, and whose
second term is — 4.

14. If every alternate term of a G.P. is taken away, the
remaining terms will be in G. P.

15. If all the terms of a G. P. are multiplied by the same
number, the products will be in G. P.

16. Show that the reciprocals of the terms of a G.P. are
in G. P.

17. By saving 1 cent the first day, 2 cents the second
day, 4 cents the third day, and so on, doubling the amount
every day, how much would be saved in a month of 30
days ?

18. Suppose a body to move eternally as follows: 20 feet
the first minute, 19 feet the second minute, 18;%; feet the
third minute, and so on. Find the limit of the distance
passed over.
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19. A ball falling from the height of 100 feet rebounds
one-fourth the distance, then falling, it rebounds one-fourth
the distance, and so on. Find the distance passed through
by the ball before it comes to rest.

20. If in problem 31 of exercise 132, @ =164, how long
will it be before the ball in problem 19 comes to rest ?

To fall 100 feet, it takes V100 + 164;, or 10V &%, seconds; to
rebound, or to fall, 25 feet, it takes V256 + 164y, or 5V 4%, seconds ;
to rebound, or to fall, 6} feet, it takes V0} + 167y, or § V{4, seconds ;
and so on. ’

Hence the time = 10V & + 2(6V3Z + § Vg + )
= 30V = &0 V570 = 7.4806 +.

HARMONIC PROGRESSIONS.

415, An harmonic progression is a series of numbers whose
reciprocals form an A.P.

E.g., the series .
L, 4 3, 4 yord, —4, —4 o
is an harmonic progression ; for the reciprocals of their terms

1, 38,5, 7, «syor }, — %, — 4%
are in A. P. ¢ b4

416. When three numbers are in harmonic progression
(H.P.), the middle term is called the harmonic mean of the
other two.

417. Let H be the harmonic mean of a and b; then by
§ 415,

%,%,%areinAP

111 1

H o b H
L2 1.1 —2ab,
"HoaTw orH_a+b
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418, If A and G denote respectively the arithmetic and
the geometric mean of a and b, then (§§ 403, 409)

A=“'§b, Q=ab, H=2%._

a+b
wAx H=%F0, 200 g _ @
2 a+b
Hence A:G=G:H.

That is, the geometric mean of any two numbers is also the
geometric mean of their arithmetic and harmonic means.

419. Problems in H.P. are generally solved by inverting
the terms, and making use of the properties of the resulting
AP

Ex. The fifteenth term of an H.P. is 1 /25, and the twenty-third
term is 1/41. Find the series.

Let a be the first term, and d the common difference of the corre-
sponding A. P. ; then

26 = the fifteenth term =a+14d,
and . 41 = the twenty-third term = a + 22 d.
snd=2, a=-3.
Hence the A.P.is -8, —1, 1, 8, b, <,
and the HP.is -4 —1,1, § § -
Exercise 136.

1. Find the sixth term of the series 4, 2, 14, ..
2. Find the eighth term of the series 1}, 1}, 22, ++«

Find the series in which
3. The second term is 2, and the thirty-first term is 4.

4. The thirty-ninth term is {4, and the fifty-fourth term
is .
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Find the harmonic mean between
5. 2 and 4. 6. 1and 13. 7. 1 and .
8. Insert 2 harmonic means between 4 and 12.
9. Insert 3 harmonic means between 23 and 12.
10. Insert 4 harmonic means between 1 and 6.

11. If a, b, ¢ are in harmonic progression, prove that
a—b:db—c=a:c




CHAPTER XXX
PERMUTATIONS AND COMBINATIONS

420, Fundamental principle. If one thing can be done in m
ways, and (after it has been done in any one of these ways)
a second thing can be done in n ways; then the two things can
be done in m X n ways.

Ex. 1. If there are 11 steamers plying between New York and
Havana, in how many ways can a man go from New York to Havana
and return by a different steamer ?

He can make the first passage in 11 ways, with each of which he
has the choice of 10 ways of returning ; hence he can make the two
journeys in 11 x 10, or 110, ways.

Ex. 2. In how many ways can 3 prizes be given to a class of 10
boys, without giving more than one to the same boy ?

The first prize can be given in 10 ways, with each of which the
second prize can be given in 9 ways ; hence the first two prizes can be
given in 10 x 9 ways. With each of these ways of giving the first two
prizes, the third prize can be given in 8 ways; hence the three prizes
can be given in 10 x 9 x 8, or 720, ways.

Proof. After the first thing has been done in any one of
the m ways, the second thing can be done in n different
ways; hence there are n ways of doing the two things for
each of the m ways of doing the first; therefore in all there
are mn ways of doing the two things.

This principle is readily extended to the case in which
there are three or more things, each of which can be done in
a given number of ways.

421, The different ways in which  things can be taken
from n things, the order of selection or arrangement being
396
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considered, are called the permutations of the n things taken
rat a time.

Thus, two permutations will be different unless they con-
tain the same things arranged in the same order.

E.g., of the four letters a, b, ¢, d, taken one at a time, we have the

four permutations
a b ¢ d.

Of these four letters taken two at a time, we have the twelve permu-

tations
ab, ac, ad, ba, be, bd, ca, cb, cd, da, ddb, dc.

If after each of these permutations we place in turn each of the
letters which it does not contain, we shall obtain 24 permutations of
the four letters taken three at a time.

The number of permutations of » different things taken r
at a time is denoted by the symbol *P,. Thus °P, °P, °P,
denote respectively the numbers of permutations of 9 things
taken 2, 3, 4 at a time.

422, To find the number of pemutatiéns of n dissimilar
things taken r at a time.

The number required is the same as the number of ways
of filling r places with » different things.

The first place can be filled by any one of the n things,
and after this has been filled in any one of these n ways,
the second place can be filled in (» — 1) ways; hence with
n things two places can be filled in n(n — 1) ways; that is,

*Py=n(n-—1). @

After the first two places have been filled in any one of
these n(n — 1) ways, the third place can be filled in (n — 2)
ways; hence three places can be filled in n(n —1) (n — 2)

ways; that is,
*Po=a(n—1)(n—2). 2
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For like reason, we have
*Pi=n(n—1)(n — 2)(n—3); ®
and so on.

From (1), (2), (3), -+, we see that in "P, there are r fac-
tors, of which the rth is n —r 4 1; hence

*P=n(n—1)(n—2) - (n—1r+1). (A)

If all the n things are to be taken at a time, r = n, and
(A4) becomes
*P,=n(n—1)(n—2)--3.2.1. (B)

423. The continued product n(n —1)(n —2) ---3.2-11s
denoted by the symbol |, or n!, either of which is read
¢ factorial n.

Thus [4=4-3-2:1; [9=9.8.7.6.5-|4
‘With this notation,(B) in § 422 can be written

*P, =|n. ®)
That is, the number of permutations of n different things
taken all at a time i3 factorial n.

Ex. 1. In how many different ways can 7 boys stand in a row ?

The number = "P; =7.6.5.4.8.2.1 = 5040. by (B)

Ex. 2. How many different numbers can be formed with the figures
1, 2, 8, 4, b, 6, taken four at a time ?

The number required =¢P; =6.5.4.3 = 360. by (A)

424, If N denote the number of permutations of n things
taken all at a time, of which r things are alike, 8 others alike,
and t others alike; then

L]

n
ris(t
Proof. Suppose that in any one of the N permutations

the r like things were replaced by r dissimilar things; then,
from this single permutation, without changing in it the
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position of any one of the other n — r things, we could form
|~ new permutations. Hence from the N original permuta-
tions we could obtain N|r permutations, in each of which
8 things would be alike and ¢ others alike.

Similarly, if the s like things were replaced by s dissimilar
things, the number of permutations would be N|r|s, each
having ¢ things alike.

Finally, if the ¢ like things were replaced by ¢ dissimilar
things, we should obtain N|r|s|¢ permutations, in which all
the things would be dissimilar.

But the number of permutations of » dissimilar things
taken all at a time is |n.

Hence Nir|s|t =|n.

Therefore N= —l—ﬁ—

|7|se

Ex. 1. How many different numbers can be formed by the figures
2,2,8,4,4,4,5,6,5,6?

L0
Th =——=1 .
e number 233 2600

Exercise 136.

1. A cabinet maker has 12 patterns of chairs and 7 pat-
terns of tables. In how many ways can he ake a chair
and a table ? Ans. 84.

2. There are 9 candidates for a classical, 8 for a mathe-
matical, and 5 for a natural science scholarship. In how
many ways can the scholarships be awarded ?

3. In how many ways can 2 prizes be awarded to a class
of 10 boys, if both prizes may be given to the same boy ?

4. Find the number of permutations of the letters in
the word numbers. How many of these begin with » and
end with s? .
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6. If no digit occur more than once in the same number,
how many different numbers can be represented by the 9
digits, taken 2 at a time? 3 at a time? 4 ata time?

6. How many changes can be rung with 5 bells out of
8? How many with the whole peal ?

7. How many changes can be rung with 6 bells, the
same bell always being last ?

8. In how many ways can 15 books be arranged on a
shelf, the places of 2 being fixed ?

9. Given "P, =12 ."P,;; find n.
10. Givenn:"P;::1:20; find n.
11. Given "Py:"*2P;::5:12; find n.

12. How many different arrangements can be made of
the letters of the word commencement ?

Of the 12 letters, 2 are ¢'s, 3 are m’s, 3 are ¢'s, and 2 are n'8 ;

12
= ———— = 3326400.
T=gppE= "

13. Find the number of permutations of the letters of the
words mammalia, caravansera, Mississippi.

14. In how many ways can 17 balls be arranged, if 7 of
them are black, 6 red, and 4 white ?

Prove each of the following relations:

1. n(n—1)(n—2)-(n—r+1)|n—r=n

16. 9-8.7-6/]3=(9/(35).

17, a(@—1)(—2) - @—r+ 1)/ =[n/(rln=r).
18. [55(6/5) =[614; .~ 5|5 < (6|4 |

19. [ela(e+1)+a=latila—1; - |ala<latila~1
20. |ala<|a+1lla—1<|a+2[a—2<|a+3|a—3< -
21. |18 — x|z is least when # =9.
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435. The different ways in which » things can be taken
from n things, without regard to the order of selection or
arrangement, are called the combinations of the n things taken
r at a time.

Thus, two combinations will be different unless they both
contain precisely the same things.

E.g., of the four letters a, b, ¢, d, taken two at a time, there are
the six combinations
ab, ac, ad, bc, bdd, cd.

Taken three at a time, there are the four combinations
abe, abd, acd, bcd.

Taken four at a time, there is one combination only.

The number of combinations of n things taken r at a time
is denoted by the symbol *C..

426. To find the number of combinations of n different
things taken r at a time.

Every combination of r different things has |r permuta-
tions; hence, "C,|r will denote "P,; that is,

*C,|r="P,
En(n—l)(n—2)...(n_,.+1).
Hence 'C'E"(”— H(n— 2?---(1»— r+1) ©

r

In applying this formula, it is useful to note that the
suffix » in the symbol *C, denotes the number of the factors
in both the numerator and denominator of the formula.

Ex. How many groups of 4 boys are there in a class of 17 ?

The nuwaber = 17C, = 17-16.15. 14
4.:3.2-1

= 2380.
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427, In (C) of § 426, multiplying the numerator and
denominator of the fraction by |[» —r, we obtain

o=t =DH(=2)- ('n—r+1)|n—-r

Iz ll‘;"
P
or 0,. = I.I—ln'—'r . (D)
Substituting n — r for 7 in (D), we obtain
SO
| Cor=r— F @
From (D) and (1), =C,="C,., ®

The relation in (E) follows also from the consideration that for
each group of » things which is selected, there is left a corresponding
group of n — r things.

The relation in (E) often enables us to abridge computation.

Eg., B0 = 160, = ‘5’2"4 106.

428, Value of r which renders "C, greatest.
*C, or |n/(|r |n — ), is greatest when |r [n — 7 is least.
lala(@a+1)+a=la+1]a—1, ete;
vale<latlla—1<|a+2(a—2< -

Hence, when n is even, |r |[n — r is least, and therefore *C,
i greatest, when r=n —1r, or r=n/2.

Again plo+1=[0+1]5
and © [p4+16<|p+2[0-1<[b4+3[0—-2<

Hence when n is odd, |r |n — r is least, and therefore *C,
is greatest, when r=n—r+1, or r=(n £1)/2.

E.g., |r |18 — r is least and 18C, is greatest when r = 9.
Again |r |16 — = is least and 15C, is greatest when r =7 or 8,
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Exercise 137.

1. How many combinations can be made of 9 things

taken 4 at a time ? taken 6 at a time? taken 7 at a time ?
The last number = %C7 =9C; = 36.

2. How many combinations can be made of 11 things
taken 4 at a time? taken 7 at a time?

3. Out of 10 persons 4 are to be chosen by lot. In how
many ways can this be done? In all the ways, how often
would any one person be chosen ?

4. From 14 books in how many ways can a selection of
5 be made, when one specified book is always included ?
when one specified book is always excluded ?

5. On how many days might a person having 15 friends
invite a different party of 10? of 12?

6. Given 3C, = 15, to find n.

7. Given "*!C;=9 x "C,, to find n.

8. In a certain district there are 4 representatives to be
elected, and there are 7 candidates. How many different
tickets can be made up?

9. Of 8 chemical elements that will unite one with
another, how many ternary compounds can be formed ?
How many binary ?

10. There are 15 points in a plane, no 3 of which lie in
the same straight line. Find how many straight lines there
are, each containing 2 of the points.

11. In a town council there are 25 councillors and 10
aldermen ; how many committees can be formed, each con-
sisting of 5 councillors and 3 aldermen ?

12. Find the sum of the products of the numbers 1, 3, 5,
2, taken 2 at a time; taken 3 at a time.

13. Find the number of combinations of 55 things taken
50 at a time.
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14. If ”'03: “Cg=44 : 3; find n.
16. If "Cy="Cy; find n; find "Cy; find 2C..

16. In a library there are 20 Latin and 6 Greek books;
in how many ways can a group of 5 consisting of 3 Latin
and 2 Greek books be placed on a shelf?

17. From 3 capitals, 5 other consonants, and 4 other
vowels, how many permutations can be made, each begin-
ning with a capital and containing in addition 3 consonants
and 2 vowels ?

18. If ®C,=1"C,,,; find r; find *C;.

19. From 7 Englishmen and 4 Americans a committee of
6 is to be formed; in how many ways can this be done
when the committee contains, (1) exactly 2 Americans,
(2) at least 2 Americans ?

20. Of 7 consonants and 4 vowels, how many permutations
can be made, each containing 3 consonants and 2 vowels ?

21. When repetitions are allowed, P, =n", and "P, =n"

‘When repetitions are allowed after the first place has been filled in
any one of n ways, the second place can be filled in » ways; hence
nP; = ”2, ete.

22. In how many ways can 4 prizes be awarded to 10
boys, each boy being eligible for all the prizes ?

23. There are 25 points in space, no 4 of which lie in the
same plane. Find how many planes there are, each con-
taining 3 of the points.

24. For what value of ris [ |18 — 7 least? [r |21 —»?
lr(45—r?

25. For what value of r is °C, greatest? “C,? »C,?
®C,? 20,7



CHAPTER XXXI
BINOMIAL THEOREM

429, In § 126 the laws of exponents and coefficients of
the binomial theorem were proved for positive integral
exponents up to 7. These laws hold for all exponents,
integral or fractional, positive or negative.

In this chapter we shall prove these laws for any positive
integral exponent, and apply them to all exponents.

430. From the distributive law for multiplication, it fol-
lows that if we take one term from each of any number of
binomials and multiply these terms together, we shall
obtain a term of the continued product of these binomials;
and if we do this in every possible way, we shall obtain all
the terms of the continued product of these binomials.

E.g., if we take a letter from each of the three binomials,
(a+bd)(a+b)(a+b),

and multiply the three letters together, we shall obtain a term of the
continued product; and if we do this in every possible way, we shall
obtain all the terms of this product.
‘We can take the a’s from the three binomials, and we can do this
in one, and only one, way ; hence a2 is a term of the product. )
We can take the b from one binomial and the @’s from the other
two, and we can do this in three ways; for the b can be taken from
any one of the three binomials ; hence 3 a? is a term of the product.
We can take the b’s from two binomials and a from the third, and
we can do this in three ways ; hence 3 «b? is a term of the product.
Finally, we can take the b's from the three binomials in one, and
only one, way ; hence b3 is a term of the product.

Hence (a+b)(a+Dd)(a +b) a® + 3a% + 3ab? + b8,
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431, Binomial theorem. Suppose we have
(a+ b) (a+ b) (@ +b) :-- to n factors. @)

If we take a letter from each of the » binomials, and
multiply these letters together, we shall obtain a term of
the continued product; and if we do this in every possible
way, we shall obtain all the terms of this product.

We can take the a’s from all the binomials in one, and
only one, way ; hence a" is one term of the product.

We can take b from one binomial and the a’s from the
remaining (n — 1) binomials, and we can do this in as many
ways as one b can be taken from the m binomials, i.e., n,
or *Cy, ways; hence *C, - a*~'b is a term of the product.

‘Again, we can take the #’s from two binomials, and the
a’s from the remaining (» — 2) binomials, and we can do this
in as many ways as two b’s can be taken from the n binomials,
t.e., "C; ways; hence "C; - a"~%?* is a term of the product.

And, in general, we can take the b’s from » binomials
(where ris any positive integer not greater than n), and the
a’s from the remaining (n — r) binomials, and we can do
this in as many ways as r b’s can be taken from the n bi-
nomials, i.e., *C, ways; hence *C, - a~"b" is the (r 4 1)th, or
general, term of the product.

The b’s can be taken from the n binomials in one, and
only one, way; hence we have the term " and this is what
the general term "C,a""b" becomes when r =n.

Hence (a+b)(a+ b)(a+b) --- to n factors

éan_i_nclan—lb_*_n 2al\—!bﬂ_i_ .ee +u0'an—rbr + oo +bu. (2)

If we substitute for *C,, "C,, etc., their values as given in
§ 426, we obtain (n denoting any positive integer)

(a+d)"=a"+na~b+ % a2 4 oo
+n(n—1)(n—2)---(n—r+1)a,,,,b,+m+'b”. 3

Lz
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Identity (2) or (3) is the symbolic statement of the bi-
nomial theorem.
The second member of either is called the expansion of
(a+ d)~
Observe that (3) states in symbols the laws in § 126, and
that therefore (3) can be written out by these laws.
Note that the sum of the exponents of @ and b in any
term is n.
Ex. Expand (z-2 — y®)4.
@ -p)=[E)+ (-]
S@E N +4E D=1 +6@)H(-12) + 4(z)(—90)*
+ (=
=x8—428) + 64y — 4270 4 Y13,

432. In the expansion of (a + b)*, the general term

"("_1)("'_2&'" (n =7+1) gurpr — the (r +1)th term.

Observe that there are r factors in both the numerator
and denominator of the coefficient of the (r +1)th term.

By giving to r the proper value, we can find any term in
the expansmn of (a+ b)™

When = is a positive integer, the coefficient of the (r+1)th
term becomes zero for any value of r greater than »; hence
there are n + 1 terms in the expansion of (a + b)™

Thus, whenr =n + 1,

n(n—DMnm—2)-(n—r+1) _n(r—1)(n—2).. n—n)_o
lr L3

Ex. Find the seventh terin of the expansion of (4z/6 — 5/2 x)°.

Here a =42/5, b=—-56/(22), n=9, r=86.

Substituting these values in the formula, we have

9.8.7.6.5-4/42\3/—5\¢
th t: === -9
the seventh term 1-2‘3-4-5-6( 3 ) (23)
= 105C0 -3,
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433. The coefficients of the expansion in (2) of § 431 are
1’ *01, ”02) .08) b ] ”Cu—b "Ou—l) " n )
hence the (r+1)th term from the beginning is *C.a* ¥,
and the (r +1)th term from the end is *C,_,a'b"".
But *C, ="C,_, for all values of r (§ 427).
Hence, in the expansion of (a + b)", the coefficients of any
two terms equidistant from the beginning and the end are the

same, so that the coefficients of the last half of the expansion
can be written from those of the first half.

434, If, in identity (3) of § 431, we put a=1 and b =z,
we have In
- nn—1) ., .. L e g
1+2)=1+nz+ Z + +mn__raf+ + (.1)

This is a convenient form of the binomial theorem, and
one which is often used.

Observe that this form includes all cases; e.g., if we want to find
(@ + b)®, we have

(a+ b?"a {a (1 +-2) }'fsa-(l +%)"__—_a..(1 +,."_:+ )

=a"+ na*1b + o,
435, In (1) of § 434 the coefficients of =, 2% a3, ..., z* are
the values of *C}, "Cj, "Cy +++, *C,; hence (1) can be written
A+2)"=14+"Cx+"Cf + «+« +*Car + .-+ "Cz*. (1)
Putting # =1, we obtain
2P=1+4+"C,+"Ci+ +++ +"C. + «-- +"C,. )
That is, the sum of the coefficients in the expansion of
A+ )" or (a+b), is 2"
From (2) it follows also that the sum of all the combina-

tions that can be made of n things, taken 1, 2, -+, n at a time,
i82n —1, )
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‘ Exercise 138.

By the laws in § 126 write the expansion of :

L B2"—29)% ¢ (r—bdy 11 @P—2ch
(2a* =30 7. (P—3adp  12. 1 —-1/2)%
(¢ + 9% 8. (22/3—3/2)" 13. (ay— a'i)s_
@z+yy. 9o @i-dht 14 2z/3—a/c)"
@—3a% 10. (-2 16 (F1—2yhe
168. Find the 3d term in the expansion of (a — 3 b)™.
17. Find the Tth term in the expansion of (1 — z)™.
18. Find the middle term in the expansion of (1 4 z)".
19. Find the middle term in the expansion of (2z — 3 y)®
20. Find the 18th term in the expansion of (1 + z)®.
21. Find the 7th term in the expansion of

[42/56—-5/2x)].

22. Find the 17th term in the expansion of (z* —1/x)®.

L A A

436, Binomial theorem, exponent fractional or negative.

When the exponent of a binomial is fractional or nega-
tive, the laws in § 126, or, what is the same thing, the
formula

@+ b)" = "+ na"-1 +"—§——2"E— D gy ...

+n(n—1)(n_2) b (n—r+1) aﬂ—rbr_'_..-, (1)

s
gives an infinite series; for in this case no one of the factors
n, n — 1, n — 2, ete., in the (r + 1)th term can ever be zero.

When, however, r increases without limit, the sum of r terms
of this series will approach (a + b)" as its limit, provided the
Jirst term of the binomial is arithmetically greater than the
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second term. That is, when n is fractional or negative, the
infinite series in (1) is the expansion of (a+ b)* provided
a > b arithmetically.

A proof of this theorem is too difficult to be given here.
For a rigorous proof, see Taylor’s ¢« Calculus,” § 98.

Ex. 1. Expand (¢! — d‘)_g and find the general term.
Applying the laws in § 126 we obtain

e —ay e+ (-t
=(e) - ge)F— @) + e V(- @
1 I G LN @
s tde+ Vo + gh V@ + @

The two distinct steps, that of applying the laws to obtain (1) and
that of performing the indicated operations in (1) to obtain (2), must
be taken separately.

In performing the operations indicated in (1), first note the number
of negative numeral factors in a term to determine the quality of its
numeral coefficient. Thus in the fourth term there are four negative
factors, — %% and (— 1)8, ’ )

Substituting in the general term for 2, @, and b their values — §,
¢, and — @2, we obtain

the (r+1)th term = <= *)(‘*)(“5]‘1) e (3D (g by

=3:8:18-(57=2) burp, @)
. §|r .

Since there are r factors in the numerator in (3), the term involves
the 2 »th power of — 1, which is + 1.
In (2), by this article ¢2 must be arithmetically less than ¢-1.

Ex. 2. Expand 1/(1 + z) and find the general term.
Applying the laws in § 126, we obtain
A+2)1=11-1.1"2.2+4+1.1-8322 - 1.1"428 4 ...
=l—z422—23 24— ..o, 1)

The (r + 1)th term = (= 1)(‘3 (D) g =(= 1y (2)

In (1), by this article @ is limited to values between — 1 and + 1.
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Ex. 3. 1+42)%=12-2.18.24+3.1"4.28 —4.1-323 4 ...
=1-22+323 —422+ ...,

 The (r+1)th wrms(_z)(_g)l;(_r-l) 1-t-rzr=(—1)(r+1)a".

Ex. 4. Expand 1/V1 -2, or (1 —z)‘}.

a- x)-lgl-i -3 l—l(_ z)+§- 1"?(_,): -A- 14(_ £)8 4 .-
S144z+ 3284 fg2 oo

The (r + 1)th termn s(——i)(_i)(—iu)_'" (zd-r+l) 1+_'(—z)'

=1.8.5...(2r—-1)
= > |£ z.
Ex. 5. Find the cube root of 127.
1271=1264+2=56% 4 2.
s V= + )t
IR IR LR TR RO L R
=54+1.2_1 4.5 8
=tt3m o mTE
=5 + 0.02666606 — 0.0001422 + 0.0000012 — ...
= 5.0266256 —.
The smaller the ratio of the second term of the binomial to the first,
the more rapidly the successive terms of the expansion decrease, and
therefore the fewer the terms it is necessary to find.

Here we put 127 = 125 + 2, because 125 is the perfect cube which
makes the ratio of the second term to the first the smallest.

+ e

Bxercise 139.
Expand to four terms:
1. 1—2) 5. (1+2)=* 9. 1—5a)t
2. 1—2)% 6 (1422~ 10. pt—chd
3. (1—=)= 7. @—x)"% 11. a/VF@ -3
4. (1—a)* 8. 1—32)L 12, b/@at—ph.
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Find the general term in the expansion of :

13.
14.

1-2= 15 (-2t 17. 1—22)7%
A—-2" 16. A+2)t 18. (1+3a)t.

In its expansion find the:

19.
20.
21.
22.
23.
24.

Sixth term and eleventh term of (3 a — V)%
Fifth term of (1 —a?)7%.

Seventh term of (z~'— y*)*.

Third term and eleventh term of (1+ 2z)¥.
Fifth term of (¢4 e’*)“.

Sixth term of (z7¥— a”b*)"*.

Find to four places of decimals the value of :

25.
26.

Y31, 21. ¥/29.  29. V620. 31. ~/998.
Vv17. 28. V122. 30. V3l.  32. v/3128.

Expand to four terms:

33.
34.
35.
36.

37.
42.

B+12a)} 38. (9+22)h

1 -3zt 39. (4a—8z)%
a-3 :c)‘*. 0. (ca - b’e”)‘*.
(@ +chi 4 a

o C@t oyt

Find the general term in each of the examples from

33 to 39 inclusive.



CHAPTER XXXII
LOGARITHMS

437. The exponent which the base a must have in order
to equal the number N is called the logarithm of N to the
base a.

That is, if a =N, @

x 18 the logarithm of N to the base a, which is written
x =loga M. @

Equations (1) and (2) are equivalent; (2) is the logarith-
mic form of writing the relation between a, z, and N,
given in (1).

E.g.,since 32 = 9, 2 is the logarithm of 9 to the base 3, or 2 = logs 9.

Since 2¢ = 16, 4 is the logarithm of 16 to the base 2, or 4 = log; 16.

Since 2-3 =1/8, — 8 =log; (1/8).

Since 4} = 8, 8/2 = log, 8.

Review §§ 52, 336, 338, 339, 386 on exponents.

Exercise 140.

1. Express each of the following relations in the loga-
rithmic form:
=8, 3*=81, 4*=64, 12! =144, 6*= 216, n°=0b.

2. Express each of the following relations in the expo-
nential form:

logs125 = 3, log; 32 =5, log, 64 =3, log,81 =4, log,M="b.
412
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8. When the base is 3, what are the logarithms of 1, 3, 9,
27, 81, 243, 729 ?

4. When the base is 4, what are the logarithms of 1, 4,
16, 64, 256, 1024 ? '

5. When the base is 2, what are the logarithms of 1,1/2,
1/4,1/8,1/16,1/32, 1/64,1/128, 1/256 ?

6. When the base is 10, what are the logarithms of 1, 10,
100, 1000, 10000, 100000, 0.1, 0.01, 0.001, 0.0001, 0.00001 ?

7. When the base is 3, and the logarithms are 0, 1, 2, 3,
4, —1, —2, — 3, —4, what are the numbers ?

438. The logarithms of all arithmetic numbers to any given
base constitute a system of logarithms.

Since 1?=1, 1 cannot be the base of a system of log-
arithms. Any arithmetic number except 1 can evidently
be taken as the base of a system of logarithms.

Since logarithms are exponents, from the general proper-
ties of exponents, we obtain the general

PROPERTIES OF LOGARITHMS TO ANY BASE.

439, The logarithm of 1 is zero.
Proof. a®=1, .. log,1=0.

440, The logarithm of the base itself is 1.

Proof. a'=a, o log,a=1.

441, The logarithm of a product is equal to the sum of the
logaritlims of its factors.

Proof. Let M=a, N=w;
then M x N = a*. § 345

Hence log,(M x N)=x+y=log, M + log, N.

Eg., logs (16 x 64)=log, 16 4 log, 64 =2 4+ 8 = 5.
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442, The logarithm of a quotient {8 equal to the logarithm
of the dividend minus the logarithm of the divisor.

Proof. Let M=o, N=uo;
then M+ N=a*". § 346

Hence log,(M+ N)=z—y=1log, M — log, N.

Eg., logs (243 + 27) = logs 243 — logs 27

=6—-8=2.

443. The logarithm of any power of a number is equal to
the logarithn of the number multiplied by the exponent of the

power.
Proof. Let M=qa*;

then, for all real values of p, we have
M? = qr®, § 348
Hence log,(M?) = px = p log, M.
Eg., log, (16%) =3 .1l0g, 16 =8 x 2 =6
logs (811) = 31ogs 81 = § x 4 = 3;

and logs (26~ =— §logs 26 =— § x 2 =—8.

444, By § 443, the logarithm of any positive integral
power of a number is equal to the logarithm of the number
multiplied by the exponent of the power; and the logarithm

of any root of a number is equal to the logarithm of the
number divided by the index of the root.

Ex. 1. Given
10g102 =.30103 and logio8 = 47712; find logso 3/720.
logio v/720 =} 1og10 (2% x 32 x 10) § 443

=$(810g102 + 2 log10 3 + logyo 10) §§ 441, 443
= §(:90309 + 95424 + 1) = .95244.
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Ex. 2. logs[ Va? + (b%})] = log, 2% — log, (b%cd) § 442
=log, ot~ (logs b® + log, c*) - §441
=¢log.z — 3logsd — §log,c. § 443

445, If o series of numbers are in geometric progression,
their logarithms are in arithmetic progression.

Eg.,if N=1/21, 1/9, 1/3, 1, 8, 9, 27, ..

logg N=-3, -2, -1, 0, 1, 2, 3, ..
Proof. The logarithms of the terms of the G. P.
N, N, sy NP

are log,N, log, N+ log,r, «--,” log, N+ nlog,r,

which is an A. P. whose common difference is log, 7.

Exercise 141.

Express log, y in terms of log, b, log, ¢, log, #, and log, 2,
having given the following equations:

1. y=abic 4. y =%

2. y=vZ V& 5. y=Vazt - Vb%.
3,

3. y=b_w.zz 8. y= Vs x’zb .
t /AP

Given logy,, 2 = .3010, log, 3 = .4771, find:

7. logy4; logy5; logy6; log,8; logy9; logy,10.
logi0 5 = logio 10 — logo2 = 1 — .3010 = .6990.

8. log,12. 10. logy, 30. 12. logy (3/2).
9. logy, 16. 11. log, 50. 13. log, (6/5).
14. logy, 1/600. 16. logy $/120.

16. Between what integral numbers does log, N lie,
when N lies between 10 and 100? Between 1 and 10?
Between .1 and 1? Between .01 and .1? Between .001
and .01?
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448. If the base of logarithms is greater than 1,

(i) The logarithm of a number 18 positive or negative,
according as the number is greater or less than 1.

(ii) The logarithm of an infinite is infinite ; and the
logarithm of an infinitesimal is a negative infinite, or, as it
is often stated, the logarithm of zero is negative infinity.

Proof. By § 437 x is the logarithm of a* to the base a.

Let a > 1; then, by the principles of exponents, we know
that
ifa*>1, 2>0; if a* <1, < 0; hence (i).

If a*=o, 2 =00; if a* =0, 2 =— o0 ; hence (ii).

COMMON LOGARITHMS.

4417, The logarithms used for abridging arithmetic compu-
tations are those to the base 10; for this reason logarithms
to the base 10 are called common logarithms.

Thus the common logarithm of a number answers the
question, ¢ What power of 10 is the number #’

Most numbers are incommensurable powers of 10; hence
most common logarithms are incommensurable numbers,
whose approximate values we express decimally.

Hereafter in this chapter when no base is written, the
base 10 is to be understood. ’

When a logarithm is negative, for convenience it is ex-
pressed as a negative integer plus a positive decimal.

E.g., the common logarithm of any number .
between 10 and 100 is +1 + a positive fraction ;
between 1 and 10 is O 4 a positive fraction;
between 0.1 and 1 is -1+ a positive fraction ;

between 0.01 and 0.1 is —2 + a positive fraction.
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448. The integral part of a logarithm is called the
characteristic, and the positive dectmal part the mantissa.
A negative characteristic is usually written in the form

1,0or9—10; 2, or 8 — 10; 3, or 7 — 10; ete.

E.g.,log 434.1 = 2.63759 ; +2 is the characteristic and .+63759 is the
mantissa : log 0.0769 = 2.88593, or 8.88503 — 10; 2, or 8 — 10, is the
negative characteristic, and .+88598 is the mantissa. The sign > is
written over the 2 to show that it affects the characteristic alone.

.449, The characteristic of the common logarithm of any
number is found by the following simple rule:

When the number is greater than 1, the characteristic is
positive and arithmetically one less than the number of digits
to the left of the decimal point ; when the number is less than
1, the characteristic is negative and arithmetically one greater
than the number of zeros between the decimal point and the

Sirst significant figure.

E.g., 785 lies between 102 and 108 ;
hence . log 786 = 2 + a mantissa.

Again 0.0078 lies between 10~8 and 10-3;
hence 1og 0.0078 = — 8 + a mantissa,

Proof. Let N denote a number which has m digits to the
left of the decimal point; then N lies between 10™-! and
10~;
that is, N = 10(=~D + fraction,

.~ log N=(m — 1) + a mantissa.

Again let N denote a decimal which has m zeros between
the decimal point and the first significant figure; then N
lies between 10-*™+V and 10-™;

that is, N == 10-(w+D+ o trction,
~log N=~ (m + 1) + a mantissa.
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460. The common logarithms of numbers which differ only
tn the position of the decimal point have the same mantissa.

Proof. When a change is made in the position of the
decimal point, the number is multiplied or divided by some
integral power of 10; that is, an integer is added to, or
subtracted from, the logarithm, and therefore its mantissa
i3 not changed.

Eg., log 1054.3 = 8.02206,

log 1.0643 = 0.02296,
log  .010543 = 8.02296 — 10, or 2.02296.

451. When a negative logarithm is to be divided by a
number, and its negative characteristic is not exactly divis-
ible by that number, the logarithm must be so modified in
form that the negative integral part will be exactly divisible
by the number.

Ex. Given log0.0785 = 2.8949 ; find log v/0.0785.

Log v/0.0786 = } log 0.0785 = } (2.8949)
=} (7. + 6.8040) = 1.8421.

Adding — 5 + 5 to the logarithm does not cha.nge its value and
makes its negative part divisible by 7.

Exercise 142.
1. Log427.32 =2.6307. Find log 42732, log 42.732.

2. Log23.95=1.3793. Find log 23950, log 239.5,
log 239500, log 0.002395, log 0.0002395, log 2395.

3. Log4398 = 3.64326. Find log /0.4398, log ~/0.4398,
log +/439.8, log +/0.04398, log ¥/0.004398.

4. Log 674.8 = 2.82918. Find log /0.6748, log ¥/0.6748,
log ~/0.06748, log ¥/0.06748, log ~/0.006748.

452, Tables of logarithms. Common logarithms have two
great practical advantages: (i) Characteristics are known
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by § 449, so that only mantissas are tabulated; (il) mantis-
sas are determined by the sequence of digits (§ 4/0), so that
the mantissas of integral numbers only are tabulated.

At the close of this chapter will be found a table which
contains the mantissas of the common logarithms of all
numbers from 1 to 999 correct to four decimal places.

Note. Tables are published which give the logarithms of all numa
bers from 1 to 99999 calculated to seven places of decimals; thoso are
called ¢seven-place’ logarithms. For many purposes, however, the
four-place or five-place logarithms are sufficiently accurate.

From a table of logarithms we can obtain:
(i) The logarithm of a given number;
(ii) The number corresponding to a given logarithm,

463, To find the logarithm of a given number,

Ex. 1. Find log 7.85.

By § 450, the required mantissa is the mantissa of log 786,

Look in column headed N’ for 78. Passing along this line to
the column headed 5, we find .8949, the required mantissa,

Prefixing the characteristic, we have

log 7.86 = 0.8949,

Ex. 2. Find log 4273.2.

When the number contains more than three significant figures, we
must use the principle that when the difference of two numbers is
small compared with either of them, the diflerence of the numbery
is approximately proportional to the difference of their logarithms.,

By § 450, the required mantissa is that of log 427.52,

The mantissa of log 427 = 604,
The mantissa of log 428 = .6714.

That is. an increase of 1 in the number causes an increase of 0010
in the mantissa ; hence an increase of 22 in the wamber will canse #n
increase of 32 of approzimately .0010. or .G, in the mantissh,

Adding 0002 to the mantisaa of Jog 427, and prefixing the charantst:
istic, we have

- Yog 4272.2 = 2.5901,
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Ex. 8. Find log 0.0008049.
By § 460, the required mantissa is that of log 604.9.

The mantissa of log 604 = .7810.

Also, an increase of 1 in the number causes an increase of .0008 in
the mantissa ; hence .9 of .0008, or .0007, must be added to .7810.

.. 10g 0.0006049 = 4.7817, or 6.7817 — 10.
To find log 30 or log 3, find mantissa of log 300.

Exercise 143.
Find, from the table, the logarithm of the numbers :
1. 8 6. 703. 9. 0.05307. 13. 7.4803.
2. 50. 8. 7.89. 10. 78542. 14. 20634.

3. 6.3. 7. 0.178. 11. 0.50438. 15. 0.0087741.
4. 374. 8. 3.476. 12. 0.00716. 16. 0.017423.

454, To find a number when its logarithm is given.

Ex. 1. #ind the number of which the logarithm is 3.8954.
Look in the table for the mantissa .8954. It is fourd in line 78 and
in column 6 ; hence

.8964 = the mantissa of log 786.
. 3.8954 = log 7860 ;
or 7860 is the number whose logarithm is 3.8954.

Ex. 2. Find the number of which the logarithm is 1.6290.

Look in the table for the mantissa .6290. It cannot be found ; but
the next less mantissa is .6284, and the next greater is .6294.

Also, .6284 = mantissa of log 425,
and .6294 = mantissa of log 426.

That is, an increase of .0010 in the mar.tissa causes an increase of 1
in the number ; hence an increase of .0006 in the mantissa will cause
an increase of approzimately & of 1, or .6, in the number ; hence

.6290 = the mantissa of log 425.6 ;
.~ 1.6290 = log 42.56.
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Ex. 3. Find the number of which the logarithm is 3.8418.

Look in the table for the mantissa .8418. It cannot be found ; but
the next less mantissa is .8414, and )

.8414 = mantissa of log 694.

Also, an increase of .0006 in the mantissa causes an increase of 1 in
the number ; hence an increase of .0004 in the mantissa will cause an
increase of 4 of 1, or .66 in the number; hence

.8418 = the mantissa of log 694.66.
. 3.8418 = log 0.0069466.

Exercise 144.
Find the number of which the logarithm is:

1. 1.8797. 6. 8.1648 —10. 11. 3.7425.
2. 7.6284 — 10. 7. 9.3178 —10. 12. 7.1342 —10.
3. 0.2165. 8. 1.6482. 13. 3.7045.
4. 2.7364. 9. 8.5209 —10. 14. 8.7982 —10.
5. 4.0095. 10. 3.8016. 15. 3.4793.

455, The cologarithm of a number is the logarlthm of its
reciprocal.
That is, colog N=1log(1+ N)=—log N.

To make the fractional part of thé cologarithm pomtwe, if
log N > 0 and < 10, colog N is written
(10 —1log N) —10;
if log N > 10 and < 20, colog N is written
(20 — log V) — 20.
Eg., colog 0.0574 = — (2.7689) = 1.2411;
colog 482 = (10 — 2.6263)— 10 = 7.3737 — 10;
colog 345000000000 = (20 — 11.5378) — 20 = 8.4622 — 20.

Instead of subtracting the logarithm of a divisor, we can,
by § 87, add jts cologarithm.
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¢ 16.08 x 0.0728
0.0534 x 7.238
log 15.08 = 1.1784
log 0.0723 = 8.8591 — 10
colog 0.0634 = 1.2726
colog 7.238 = 9.1404 — 10
Add, log (fraction) = 0.4504 = log 2.8213.

Hence the fraction = 2.8213.

Ex. 1. Find the value o

Ex. 2. Find the value of 0.0643 x 6.34 x (— 6.178).
log 0.0543 = 8.7348 — 10
log 6.34 =0.8021
log 6.178 = 0.7141
Add, log (product) = 0.2610 = log 1.7824.
Hence the product is . 1.7824.

By logarithins we obtain simply the arithmetic value of the result ;
its quality must be determined by the laws of quality.

5.42 x 427.3
Ex. 8. Find the value of 5/><—.

Vs.24¢ x 0.0231%
log 5.42 = 0.7340 = 0.7840
2log 427. =(2.6304) x 2 = 5.2608
4 colog 3.24 = (9.4895 — 10) x 4 = 7.9580 — 10
1 colog 0.0231 = (1.6364) + 2 =0.8182
5)4.7710
. log (root) = 0.9542
. root = 9.00

456, An exponential equation is one in which the unknown
appears in an exponent; as 2*=5, #*=10.
Such equations are solved by the aid of logarithms.
. Ex. 1. Solve 8% — 14 x 3=+ 45=0. ¢))
Factor (1), (8 —9)(3* — 5)=0. @
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Equation (2) is equivalent to the two equations

8 =9, (©)) 8= =5. “4)
From (3), =2,
From (4), z log 3 = log 6.
_log6_0.6990 _
=1.464
“log8 0.4771 B

Hence the roots of (1) are 2 and 1.4649.

Exercise 146.

Find by logarithms the value of:

1. 742.8 x 0.02374. 7. 4743 + 3274.
2. 0.3527 x 0.00572. 8. 9.345 + (— 0.0765).
3. 78.42 x 0.000437.
o, 2476 x (—0.742)
4. 5234 x (—- 003671). . * 7381 x (_ 0.00121)
5. 3.246 x (— 0.0746). o, 820 x (= 481) x (357)
6. —4.278 x (—0.357). 421 x (—741) x (4.21)
11. 5% 14. (3)° 17. ().
12. 0.021%, 15. 71428 18. (3p)\.
13. 0.532", 16. (431)". 19. 47189

0.035° x 54.2 x 785% x 0.0742

20.
4.72% % 7143 x 8471

21, 8 8 .
V7.421} x /174 x 1/0.00215

/ 0.04272 x 5.27 x 0.8754

;07143 x 0.13713 x 0.0718%
22. \/
0.5212 x 0.742" x 0.05274
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Solve each of the followi;xg equations :

23. 31°=23. 25. 5 = 800. 27. 53 = 8%+,
24. 0.3*=0.8. 26. 12*=3528. 28. a®b%> =c’.
29. 2:58-1_ 433s+] 80. 4*—15 (4’) -+ 56 =0.

COMPOUND INTEREST AND ANNUITIES.

467, To find the compound interest, § I, and amount, $ M,
of a given principal, $ P, in n years, $ r being the interest on
$1 for 1 year.

Let $ R —=the amount of $1 in 1 year; then R =147,
and the amount of $ P at the end of the first year is $ PE;
and since this is the principal for the second year, the
amount at tbe end of the second year is $§ PR x R, or
$ PR®. For like reason the amount at the end of the third
year is § PR?, and so on; hence the amount in n years is
$ PR*; that is,
M=PR* or P(1+7)~ @)

Hence I=P(R~—1). &)

If the interest is payable semi-annually, the amount of
$Pin 1/2 a year will be $ P(1+ r/2); hence, as n years
equals 2 » half-years,

M=P( +r/2)™ B
Similarly, if the interest is payable quarterly,
M=P( +r/4) @

Ex. Find the time in which a sum of money will double itself at
ten per cent compound interest, interest to be ‘‘ converted into prin-

cipal ’ semi-annually.
Here 1+ r/2 =1.06. Let P=1; then M=2.
Substituting these values in (3), we obtain
2 = (1.06) %",
.~ log2 =2n .log1.06.

oon=_log2 _03010_,, years. Ans.
2log1.06 0.0424
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458, Present value and discount. Let $ P denote the pres-
ent value of the sum $ M due in » years, at the rate r; then
evidently in n years at the rate r, $ P will amount to $ M;
hence ' '

M= PR", or P=MRE™.

Let $.D be the discount; then

D=M—P=M(1—R™).

459, An annuity is a fixed sum of money that is payable
once a year, or at more frequent regular intervals, under
certain stated conditions. An Annuity Certain is one pay-
able for a fixed number of years. A Life Annuity is one
payable during the lifetime of a person. A Perpetual An-
nuity, or Perpetuity, is one that is to continue forever, as,
for instance, the rent of a freehold estate.

460. To find the amount of an annuity left unpaid for a
given number of years, allowing compound interest. -

Let $.4 be the annuity, n the number of years, § B the
amount of one dollar in one year, $ M the required amount.
Then evidently the number of dollars due at the end of the

First year =A4; _

Second year= AR+ 4;

Third year = AR*+ AR+ A4;

nth year ~=AR" '+ AR"*+4...4+ AR+ A

_AR—1),
_ R—-1
That is, M=‘7A (R*—1). )

Ex. 1. Find the amount of an annuity of $100 in 20 years, allow-
ing compound interest at 4} per cent.

— A pn_ 1y 100(1.045% — 1)
M_r(R )= 0.046



426 ELEMENTS OF ALGEBRA

. By logarithms, 1.045% = 2.4117.
141.17
M=———= 11.
0.046 3137.

Hence the amount of the annuity is $3137.11.
Ex. 8. What sum must be set aside annually thaf it may amount
to $50,000 in 10 years at 6 per cent compound interest ?

Mr___ 50,000 x 0.08
R -1 10601

Hence the required sum is $3793.87.

From (1), A= =38793.37.

461, To find the present value of an’ annuity of $ A pay-
able at the end of each of n successive years.

Let $ P denote the present value; then the amount of
$ P in n years will equal the amount of the annuity in the
same time : that is,

PRr=A(R—1)r ' 6))
o P=AQ1—-R™r @
If the annuity is perpetual, then n= o, BR™"=0, and

(2) becomes
P=Ar"

Exercise 146.

1. Write out the logarithmic equations for finding each
of the four numbers, M, R, P, n.

2. In what time, at 5 per cent compound interest, will
$100 amount to $1000 ?

3. Find the time in which a sum will double itself at
4 per cent compound interest.

4. Find in how many years $1000 will become $ 2500
at 10 per cent compound interest.

5. Find the present value of $ 10,000 due 8 years hence
5 per cent compound interest.
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6. Find the amount of $1 at 5 per cent compound in-
« terest in a century.

7. Show that money will increase more than thirteen-
thousand-fold in a century at 10 per cent compound interest.

8. If A leaves B $1000 a year to accumulate for 3
years at 4 per cent compound interest, find what amount B
should receive.

9. Find the present value of the legacy in example 8.

10. Find the present value, at 5 per cent, of an estate of
$1000 a year to be entered on immediately.

11. A freehold estate worth $120 a year is sold for
$4000; find the rate of interest.

12. A man has a capital of $20,000, for which he re-
ceives interest at 5 per cent; if he spends $1800 every
year, show that he will be ruined before the end of the
17th year.
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1

2

3

4

5

0414
0792
1139
1461

1761
2041
2304
2563
2788

3010
3222
3424
3617
3802

3979
4150
4314
4472
4624

4771
4914
6051
5185
53156

5441
5563
5682
5798
5911
6021
6128
6232
6335
6435

6532
6628
06721
6812
6902
6990
7076
7160
7243
7324

0043
04563
0828
1173
1492

1700
2068
2330
2677
2810

3032
8243
3444
3636
3820
3997
4166
4330
4487
4639

4786
4928
5085
5198
5328

5453
6575
5694
5809
65922
6031
6138
6243
6345
6444

6542
6637
6730
6821
6911

6098
7084
7168
7261
7352

0080
0402
0864
1206
1623
1818
2095
2365
2601
2833

3054
3263
3464
3655
3838

4014
4183
4346
4502
46564
4800
4942
5079
6211
5340
5465
5587
5706
6821
5933

6042
6149
6253
6356
6454

0551
6646
6739
6830
6920

7007
7093
7177
7260
7340

0128
0531
0899
1239
1563

1847
2122
2380
2625
2856
3075
3284
3483
3674
3866

4031
4200
4362
45618
40069

4814
4956
5092
65224

5478
65599
6717
6832
6944

6063
6160
6263
6365
6464

68661
6856
6749
6839
6928

7016
7101
7185
7267
7348

0170
056!

0934
1271
1684

1875
2148
2405
2648
2878

3304
3602
3692
3874

4048
4216
4378
4533
4683

4829
4969
5106
5237

0212
0607
0969
1303
1614

1903
2176
2430
2672
2900

3118
3324
3622
8711
3892

4065
4232
4393
4548
46908

4843
4083
5119
6250

5366 | 6378

5490
5611
5729
65843
5966

6064
6170
6274
6376
6474

6571
6665
6758
6848
6937

7024
7110
7193
7276
7366

5502
5623
5740
5855
5966

6075
6180
6284
6386
6484

65680
6675
6767

6857.

6946

7033
7118
7202
7284
7364

6875

7060
7135
7218

7380

0374
0756
1106
1430
1732

2014
2279
2765
2089

3201
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61
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7404
7482
7669
7634
7709

7782

7924
7993
8062

8129
8196
8261
8326
8388

8451
8513
8578
8633
8692

8751
8808

8921
8976

9031
0085
9138
9191
9243

9294
0345
9395

9494

0642
9590

9686
9731

o777
0823
9868
9912
9966

8982

9143
9196
9248

9299
9360
9450
9499
9647

9696

9689
9736

9782
09827
9872
0917
9961

7419
7497
7674
7649
7723

7796
7868
7938

8076

8142
8200
8274

8401

8463
8625
8585
8645
8704

8762
8820
8876
8932
8987

0042

9149
9201
9253

9304
0365
9405
9465
9504

9562
9600

9694
9741

0786
0832
9877
0921
9966

7427
7606
7682
7657
7181

7803
7876
7945
8014
8082

8149
8215
8280
8344
8407

8470
8631
8591
8651
8710

8768
8826
8882
8938
8993

9047
9101
0164

9268

0309
9360
09410
9460
9609

9667

06562
0699
9745

9791
9836
0881
9926
0969

7436
7513
7689
7664
7738

7810
7882
7962
8021
8089

8166
8222
8287
8361
8414

8476
8537
8597
8667
8716

714
883
8887
8943
8998

90563
9106
91569
9212
9263
9316
9366
9416
9465
9513

9562
9609
09657
9703
9760

9795
0841
9886
9930
0974

7443
7620
7697
7672
7745

7818
7889
7969
8028
8006

8162
8228
8293
8367
8420

8482
8543
8603
8663
8722

8779
8837
8893
8049
9004

90568
9112
9166
9217
9269

9320
9370
9420
9469
9518

0566
9614

9708
9764

9800
0845
9890
9934
9978

7451
7628
7604
7679
7762

7825
7806
7966
8035
8102

8169
8236
8299
8363
8426

8488
8549
8609
8669
8727

8785
8842
8899
8964

9063
9117
9170
9222
9274
9326
9375
9425
9474
9523

9571
9619

9713
9769

9806
0860
9894
0939
0983

7469
7636
7612
7686
7760

7832
7903
7973
8041
8109

8176
8241
8306
8370
8432
8494
8566
8615
8675
8733

8791
8848
8904
8960
9015

9069
9122
0176
9227
9279

9330
9380
9430
09479
9628

9676
0624
9671
0717
9763

9809
9854
9899
9943
9987

7466
7643
7619
7694
7767

7839
7910
7980
8048
8116

8182
8248
8312
8376
8439

8500
8661
8621
8681
8739

8797
8854
8910
8965
9020
9074
0128
9180
0232
9284

9335
9385
9435
9484
9633
9681
0628
9675
9722
9768

9814
9869
9903
9948
9991




CHAPTER XXXIII
GRAPHIC SOLUTION OF EQUATIONS AND SYSTEMS

462, Let XX' and Y'Y be any two fixed straight lines
at right angles to each other at 0. Let the directions
OX and OY be positive directions; then the directions
Y OX' and OY" will

be mnegative direc-
tions.
The lines XX'
i and Y'Y are called
: axes of reference,
H and their intersec-
PM tion O, the origin.
; From P, any
!

i
w9

3

g:_
o.

point in the plane
of the axes, draw
PM parallel to
, YY'; then the po-
Fa1 sition of P will be

determined when
we know both the lengths and the directions of the lines
OM and MP.

The line OM, or its numerical measure, is called the
abscissa of the point P; and MP, or its numerical measure,
is called the ordinate of P. The abscissa and ordinate
together are called the coordinates of P.

[ ——— .g

~

I

E.g., OM' and M'P are the cosrdinates of P'; the abscissa, OM,
is negative, and the ordinate, M’ P, is positive. OM', the abscissa
of P', is positive, and M'"" P!!!, its ordinate, is negative.

430
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An abscissa is usually denoted by the letter «, and an
ordinate by .

Observe that the numerical measure of OM or MP is a
positive number, if it extends in the direction OX or OY;
and a negative number if it extends in the direction OX’
or 0Y".

The axis XX’ is called the axis of abscissas, or the x-axis;
and YY’, the axis of ordinates, or the y-axis.

The point whose coordma.tes are # and y is denoted by
C)

E.g., (2, — 8) denotes the point of which the abscissa is 2, and the
ordinate — 3.

We use a system of codrdinates analogous to that explained above

~ whenever we locate a city by giving its latitude and longitude; the
equator i one axis, and the assumcd meridian the other.

Ex. Plot the point (— 2, 3); (-3, —4).

In the figure lay off OM’ = — 2, and on M'P parallel to Y Y’ lay oft
M'P' =+ 3; then P is the point (— 2, 3).

To plot (— 8, — 4), lay off OM" =— 3, and on M" P! parallel to
YY' lay off M P! =— 4; then P! is the point (— 3, — 4).

The lines XX’ and Y'Y’ divide the plane into four equal
parts called quadrants, which are numbered as follows:

XOY is the first quadrant, YOX' the second, X'OY" the
third, and Y'OX the fourth.

Exercise 147.

1. Plot the point (2, 3); 4, 7); 3, —5); (—2, +3);
(=3, +5); (4, —2); (=2, —=3); (=5, —3); (=2 4);
(=4 —1); (©,0).

2. In which quadrant is (*a, *0)? (*a, “b)? (@, *b)?
(Ca, ")?

3. What is the quality of = and of y, when the point
(x, y) is in the first quadrant? Second quadrant? Third
quadrant? Fourth quadrant?
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4. In which quadrants can the point (2, y) be, when « is
positive? « negative? y positive? y negative?

- 5. In what line is the point (z, 0)? (0, )?

6. Where is the point (0, 0)? (4,0)? (—3,0)? (0,2)?
©, —5)?

463. Graphic solution of equations in x and y.

The locus, or graph, of an equation in « and y is the line
or lines which include all the points, and only those, whose
coordinates satisfy the equation.

Ex. 1. Draw the locus of y=22—z—86. (¢))
If in (1) we put 2 =-3, —2, —1, ..., we obtain
when z=-8, -2, -1, 0, 1/2, 1, 2,84, ..,
y=6, 0 —4, —6, —6} —6, —4,0, 6, -...

Drawing the axes XX’ and YY'in fig. 2, and assuming Ol as the
linear unit, we plot the points

(‘—3! 6)’ ("'21 0)1 ("19 —4)a (01 _6)’ °0%

The relative positions of these points indicate the form of a curve
through them.

Whenever there is any doubt about the form of this curve between
any two plotted points, as between (0, — 6) and (1, — 6), one or
more intermediate points should be found and plotted.

As z increases indefinitely from 8, y (or 22 — z — 6) continues posi-
tive and increases indefinitely ; hence the locus has an infinite branch
in the first quadrant. As z decreases indefinitely from — 2, y con-
tinues positive and increases indefinitely ; hence the locus has an
infinite branch in the second quadrant.

Drawing a smooth-curve through the plotted points we obtain the
curve ABC in fig. 2, which, with its infinite branches, is the locus
of equation (1).

This curve is called the locus of the equation because each and
every real solution of equation (1) is the codrdinates of some point
on the curve.
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Imaginary or complex solutions of an equation cannot be
represented by the coordinates of any points in the plane
XO0Y, since by definition the codrdinates of every point in
this plane are real. ‘

Note. The pupil should use codrdinate or cross-section paper, and
with a hard pencil draw the loci of equations neatly and accurately.

y=22—2—86. y=z3-2z.
A 1Y c 24 D
I [
| s -
: : !
| | !
| 1 B i
| ] L |
5 | h !
x' =3 : r =3 [ 1]
=) X oy X
| Ly
1
! c
i
]
i
]
!
B 4 'Y
Fia. 2 Fi1a. 3
Ex. 2. Draw the locus of y = 2% — 2. (¢))

When z=—2, —2, —1, —0.8,0, 0.8, 1, 2, 2, -
y=—4, 0, 1, 11,0, =11, —1, 0, 4, -...

As z increases indefinitely from 2, y (or 28 — 2 z) continues positive
and increases indefinitely ; hence the locus has an infinite branch in
the first quadrant.

As x decreases indefinitely from — 2, y continues negative and
arithmetically increases without limit; hence there is an infinite
branch in the third quadrant.

Plotting these points, as in fig. 3, and tracing a smooth curve
through them, we obtain the curve ABCD, which, with its infinite
branches, is the locus of (1).
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Ex. 3. Draw the locus of y =28 — 3 2% + 4.
When z=—3/2’ T 1, -4 0 1/2s 1, 2, 8,
y=— 61, 0, 3.1, 4, 3.4, 2, 0, 4, v,

As z increases from 2, y increases indefinitely from 0; and, as
z decreases from — 1, y decreases indefinitely from 0.

The locus is the curve ABCD in fig. 4, which has one infinite
branch in the first quadrant and another in the third.

y=2"—382244. y=x*+a3—322—2+4 2.
BN D 4 Y |E
b.¢ X
C|
I |
! EO l b.¢
- i
A iy’ i ,
JB Y
Fiac. 4 ) F1c. 5

Ex. 4. Draw the locus of y =2t + 23 — S22 — 2 + 2.
When z=-§%, -2, -—-% -1, -4 —.2,0, % 1, 4§ -
y=92 0, —16, 0, L7, 2.08, 2, 0.9, 0, 2.2, ---.

The locus is the curve in fig. 5, which has one infinite branch in
the first quadrant and another in the second.

The foregoing examples illustrate how each real solution of an
equation in z and y is the codrdinates of some point in the locus;
hence, by the codrdinates of its points, the locus of an equation in
2 and y gives all its infinite number of real solutions,
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Exercise 148.

Draw the locus of each of the following equations, stating
in which quadrants the infinite branches lie:

1. y=2'—4z2-5. 4. y=* -3 — 42412
2. y=z—2*+6. 5. y=2—a—6ux.
3. y=¢‘—43. 6. y=:c‘—5w’+4.

7. Using one set of axes, draw the loci of
y=z,y=2+2, y=2-—2.
Observe that these loci are parallel straight lines.
8. Using one set of axes, draw the loci of
y=2z, y=2z43, y=2z2-3.
9. Draw the locus of
y=3z—2,of y=—2z41,0f 2y=42—6.

These examples illusirate the truth that the locus of any linear
equation in x and y is a straight line.

Hence to draw the locus of any linear equation we can plot two of
its points and draw a straight line through them.

10. Draw the locus of
,=4, 0f,=—-3, ofrx=3 ofx=—4
Obsexve that each of these 10Gi is puraliie]l 10 one of the axes.

11. From the origin O as a cezire aud with a radius 5,
draw the ereunference of a circle.  Draw the ordinate PM
of anr point P on tiis ¢ircznderence and the radins OP.
Demote the soiriizates of Py r ané v. Then from the
ngidangled riangie OMP. we oliain & + ¥ = 5

What then is the Jocus of £+ =257
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12. Draw the locus of 2* 4 y*=9, of 2*+ y*>=16.

Examples 11 and 12 illustrate the truth that the locus of any equa-
tion of the form x? + y3 = r? is the circumference of a circle whose
centre 18 at the origin and whose radius is r.

18. Draw the locus of 42°49y*>=36. @
Here y=+43VvV9—2z2

Evidently — 38 is the least value of z which will render y real ; hence
no part of the locus can lie to the left of the line z = — 8. For like
reason no part of the locus can lie to the right of the line z = 3.

When z=-8, —26, -2, -1, O, 1, 2, 8,
y=0, +1.1, +1.5, +19, +2,-+ 1.9, + 1.5, 0.

The locus is the ellipse RASB (fig. 8, page 439), the semi-axes
being 8 and 2.

Observe that in (1) the coefficients of 22 and y2 are unequal, while
in examples 11 and 12 they are equal.

14. Draw the locus of 2+ 43y’ =4.

15. Draw the locus of o —4y*=4.
Here y==+1/2Va?—4. (¢))

When z >2 or < — 2, the values of y in (1) are real ; when z lies
between — 2 and + 2, y is imaginary; hence there is an infinite
branch in each of the four quadrants, but no point of the locus lies
between the lines z =— 2 and z = 2.

16. Draw the locus of y* =4 x.

17. Using one set of axes, draw the loci of
z—y=—3 and z4+y=1.

F]

Observe that these equations are independent and consistent, and
that the one and only point common to their loci is (— 1, 2).

18. Using one set of axes, draw the loci of
2¢—y=—1and 2z2—y=—3.

Observe that these equations are incoﬁsist.ent, and that their loci
are parallel and hence have no point in common.
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19. Using one set of axes, draw the loci of
2¢+y=1and 6z+3y=3.

Observe that these equations are equivalent, and that their loci
coincide and hence have all points in common.

20. What is the greatest number of points in which a
straight line can cut the locus in fig. 2? In fig.3? In
fig.4? Infig. 5? Compare each answer with the degree
of the equation of each locus. '

464. Graphic solution of éystems of equations.
Ex. 1. By the aid of loci discuss the system

ar + by =c, (¢))
a4y =¢ }(a)
y=c. @

Let the locus of (1) be the straight line MXN, and that of (2)
the line RP. Then the codr-
dinates of the point P, which is
common to both loci, will be
the solution. common to (1)
and (2), or the solution of the
system (a). By measuring
the coodrdinates OA and AP,
the numerical solution of the
system could be obtained.

This example illustrates

graphically the theorem in F1c.6
§ 207.

The loci will have one, and only one, point in common,
if afa £b/V,

i.e., if (1) and (2) are ihdependent and consistent (§ 207). -
The loci will cotncide throughout their whole émtent,

if afa =b/Y =c/d,

i.e., if (1) and (2) are equivalent (§§ 207, 857).
The loci will be parallel and have no point in common,‘

if afa =b/b and afa’ £ c/fc!, .

i.e., if (1) and (2) are inconsistent (§§ 207, 357).
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Ex. 2. By the aid of loci, discuss the system

2 + 4 = 26, m
a

y=z+o (2>}()
for different values of c.

The locus of (1) is the circle PPRP' ; and, if ¢ =1, the graph of
(2) is the straight line MNV'; hence the cobrdinates of the two points
P and R are the two solutions of system (a).

By measurement we find the two solutions to be 8, 4 and — 4, — 3.

5V3
YI
Fi1e. 7

As ¢ increases, the locus MN moves upward parallel to itself, and
P and R approach P.

When ¢ = 5V2, the locus of (2) is the tangent N’M’, and the two
solutions of the system are equal.

Similarly, when ¢ =— 5V/2, the locus of (2) is M''N"".

When ¢ < 5V2 and > — 5V2, the locus of (2) lies between N'M'
and N""M'", and the two solutions of the system are real and unequal.

When ¢ > 5V?2 or < — 5Vv2, the locus of (2) does not cut the circle,
and both solutions of the system are imaginary or complex.
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Ex. 3. By aid of loci discuss the system

422+ 9y? =86, (¢))]
b
2+y=12 ()]

for different values of 7.
The locus of (1) is the ellipse ARBS, in which 04=38 and OR=2.

/

Y
Fia. 8

If r=5/2, the locus of (2) is the circle PP P/'P'", and the four
solutions of the system are the codrdinates of the four points P, P/,
P!, P!, and thus are real and unequal.

If r = 8, the circle will be tangent to the ellipse at 4 and B; hence
two solutions of the system will be 3, 0, and the other two — 3, 0.

If r = 2, the circle will be tangent to the ellipse at R and 8.

If » < 2 or > 3, the two loci will have no common points, and all
four solutions of the system will be imaginary or complex.

When r = 5/2, by clearing (2) of fractions and then subtracting it
from (1) we obtain 532 = 11, the locus of which is the parallel lines
PP and PP/, These lines cut either the ellipse or the circle in all
the points which are common to these curves, and only in these points.
This illustrates the equivalency of system (@) to the system

4x’+9y’=36,} z’+y’=z‘&,}
or
by?=11. 5y2 =11
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Ex. 4. By aid of loci discuss the system

ay =12, ) } .
(a5
y=mz+ n, @

for different values of m and n.

The locus of (1) is the curves AB and CD, whose infinite branches
approach the axes.

When n =0 and m = 3/4, the locus of (2) is the line PP, and the
two solutions of system (a) are the codrdinates of the points P and P.

Let m = 0 ; then P will move out along the infinite branch PB, and
P along the infinite branch P/C ; that is, y =0 and z =+ o or — oo,

Y] 4
P,

' : B
X : — X
C 1

P
ol (Y
Fic. 9

Again, when n = 0, the two solutions of system (a) are
2v8/m,2vV3m, and —2Vv3/m, —2V3m. (©))
For m = 0, the solutions in (38) assume the forms
a/0, 0 and —a/0, 0;
hence equation (1) and y = 0 are inconsistent, and system () is then
impossible. This agrees with the figure, for the locus of y = 0 coincides
with X’0X, and does not intersect the locus of (1).

When m is negative, the solutions in (3) become imaginary. This
agrees with the figure ; for when m is negative, z and y in y = mz are
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opposite in quality, and hence the locus of y = mx will lie in the
second and fourth quadrants, and will not cut the locus of (1).

If m =0 and 2 = 0, the locus of (2) will be parallel to X0X", and
will cut the locus of (1) in only one point ; hence system (@) will be
defective in one solution.

Exercise 149.

1. By aid of loci show that system (@) is equivalent to
the four systems in ().

2?4yt =25
2 @
xy=12 .
az+y=7} z4+y="T } m+y=—7} z+y=—7} ®
z—yY=1) z2—y=—-1J) z—y=1 r—y=—1 '

2. By aid of loci show that the following six systems are
equivalent:

x’+y’=25} a;’+y’=25} a;’-l-y’=25}
ST £=16 F=9
z’—y’=7 } x’—y’=7 } 2?=16 }
@?=16 ¥=9 =9

GRAPHIC SOLUTION OF EQUATIONS IN X

465, A variable whose value depends upon one or more
other variables is called a dependent variable, or a function of
those variables. A variable which does not depend upon any
other variable for its value is called an independent variable.

E.g., % 222 —3x+ 17T, or x4 — 722 + 9, is a function of the inde-
pendent variable z.

Again, y in each of the equations in this chapter is a function of the
independent variable z.

The symbol f(x), read ¢ function ,” is used to denote any
function of .
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The symbols f(a), f(2), f(1) represent the values of f(z)
when = a, 2, 1, respectively.

E.g., if f(z)=2® + z, then
' J(@)=a+a f(2)=2+2=10, f(1)=2.

Since f(z) denotes any function of 2, y = f(«) denotes any
equation in # and y, when the equation is solved for y.
Thus, any one of the equations in the first ten examples in
exercise 146 is a particular case of y = f(z).

466. A continuous real variable is a variable which in
passing from one real value to another passes successively
through all intermediate real values.

A function, as f(x), is said to be real and continuous be-
tween x =a and z=1b, if when z is real and changes con-
tinuously from a to b, f(x) is real and varies continuously
from f(a) to f(b). In other words, f(x) is real and continu-
ous between z = a and # = b, when the locus of y = f(x) is
an unbroken curve between the lines # = a and = = b.

E.g., the time since any past event varies continuously. The veloc~
ity acquired by a falling body and the distance fallen are continuous
functions of the time of falling.

In each of the four examples in § 463, y is a continuous function of
z for all real values of z.

In example 2 of § 464, y in equation (1) is real and a continuous
function of z between £ = — 6 and z =+ b.

The examples in § 463 illustrate the fact that
Any rational integral function of x 18 a continuous function.

In what follows we shall use f(x) to denote a rational
integral function of .

467. The ordinates of the points in the locus of y=o*
—2—6 in fig. 1, of § 463, are the successive values of
#? — ¢ — 6 corresponding to successive values of z; hence,
the locus of y = f(x) is often called the graph of f(x).
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E.g., in fig. 2, while z increases continuously from — 3 to zero,
the function z2 — z — 6 decreases continuously from 4 6 though zero
to — 6 ; and while  increases from zero to + 4, 2* — z — 6 first de-
creases from — 6 and then increases to + 6.

Again, in fig. 3, while z increases continuously from — 2 to — 0.8,
the function 23 — 2 x increases continuously from — 4 to + 1.1; while
z increases from — 0.8 to + 0.8, 28 — 2% decreases from + 1.1 to
— 1.1 ; while 2 increases from + 0.8 to + 2, 2® — 2 % increases from
—1.1to4.

In like manner, in the other figures, the pupil should follow the
changes in f(x) as z increases.

468, The abscissas of the points in which the graph of
J(@) cuts or touches the axis of « are the real values of =
for which f(x) is zero; that is, they are the real roots of
the equation f(x) =0.

At a point of tangency the graph is properly said to touzh
the axis of # in two coincident points.

E.g., from the graph in fig. 2, we learn that one root of the equa-
tion 22 —x — 6 =0 is — 2 and the other is 3.

From the graph in fig. 3, we learn that the three roots of the equa-
tion 28 — 22 =0 are — /2, 0, and /2.

In fig. 4, the graph cuts the axis of z at (— 1, 0) and touches it at
(2, 0) ; hence, one root of 28 — 322+ 4 =0 is — 1 and the other two
roots are 2 each.

Hence, to find the real roots of f(x)=0, we can draw
the graph of f(«), or the locus of y = f(), and measure the
abscissas of the pomts of intersection and tangency with
the z-axis.

Exercise 150,

Construct the graph of f(x), and find approximately the
real roots of each of the following equations:

1. 242—2=0. 4. -3 —-424+11=0,
2. P4+2x—5=0. 5. —422—6x—8=0.
8. #—3x+4=0. 6. ¥*~42*—324+2=0.
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THEORY OF EQUATIONS

469. Horner’s method of synthetic division.
Let it be required to divide
Ax®*+ Bx3+ Cz + D by z —a.

If for convenience we write the divisor to the right of the dividend
and the quotient below it, by the usual method we have :

Az® + B23 + Cx +D|z—a

Ax® — Aax? Az? + (Aa + B)z
(Aa + B)23 + (4a® + Ba+ C)
(4a + B)z? — (Ad® + Ba)z

(Aa® + Ba + C)x
(Aa? + Ba + C)z — (Aa® + Ba? + Ca)
Aa® + Ba? + Ca + D
In the shorter or synthetic method, we write only the coefficients of
the dividend and place a at their right, as below :

A B (o] Dla
_ Aa Aa? + Ba Aa® + Ba? + Ca
A Aa + B Aa® + Ba+ C Aa®+ Ba?+ Ca + D

Multiplying A by a, writing the product under B, and adding, we
obtain Ae + B. Multiplying this sum by a, writing the product under
C, and adding, we obtain 4ae? + B« + C. In like manner the last
sum is obtained.

Now A and the first two sums are respectively the coefficients of
22, z, and 2° in the quotient obtained above by the ordinary method,
and the last sum is the remainder.

In like manner any rational integral function of z can be divided
by z — a. If any power of z is missing, its coefficient is zero, and
must be written in its place with the other coefficients.

Observe that the shorter or synthetic method of division
includes only that part of the usual method given above
which is in black-faced type.

444
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Since we omit the sign — before the second term’ of the
* divisor, we must omit also that sign before the second term
of each product, and then add that term to the dividend, as
in the shorter method above.
Here the remainder Aa® + Ba? + Ca + D is the value of the divi-
dend Az + Bx? + Cx + D for z = a, which affords a second proof
of §131.

Ex. 1. Divide 2% + 28 — 2923 — 9 + 180 by = — 4.
Write the coefficients with 4 at their right and proceed as below :
2 +1 —-29 -9 41804
+8 + 36 +28 4 76
2 +9 4+ 7 +19 4256

Hence the quotient =23 4 923 + 7z + 19,
and the remainder, or f(4),=256.

Ex. 2. Divide 22 + 28 — 2923 — 92 + 180 by z + 5.

2 4+1 -2 —9 4180|—56
—10  +45 —80 . 4445
2 -9 418 —89 462

Hence the quotient = 2 23 — 922 4- 16 — 89,
and the remainder, or f(— 5),= 626.
Ex. 3. Divide 2% + 21z + 342 by z +6.

1 +0 +21 +3842| -6
-6 +36 — 342
1 -6 + 67 0
Hence the quotient = 22 — 6z + 57,

and the remainder, or f(— 6),=0.
Hence the division is exact, and z + 6 is a factor of f(z).

Exercise 151.
By Horner’s method

1. Divide #* —2a*—42+8 by «—3; by 2 —2.
2. Divide 24* +44*—2’— 160 —12 by 2 +4; by 2 + 3.
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8. Divide 3a# —272* 41424120 by «—6; by =z + 5.

4. Find the value of 2% —32*+ 32 —1 when z=4;
when #=—3; when £=3; when 2 =25.

5. Show that one factor of 2®* 4 82* 4 20x 4 16 is = + 2,
and from the quotient find the others.

6. Show that two factors of 2t +2* —292*— 9z 4 180
are z — 3 and z 4 3, and find the others.

7. Show that two factors of ##—42*— 82+ 32 are x — 2
and z — 4, and find the others.

INTEGRAL RATIONAL EQUATIONS IN ONE UNKNOWN.

470. If all the terms of an integral rational equation in
are transposed to the first member and arranged in descend-
ing powers of «, we shall obtain an equivalent equation of
the form

A+ Az + Agt 4 e + Ao+ 4,=0, (B)

where 4,, A,, A4y, ---, A,_;, A, denote any known numbers,
real, imaginary, or complex, and » denotes the degree of the
equation.

Denoting the first member of (B) by f(z), (B) can be

written
F@=0.

471. To solve equation (B), or f(z) =0, by § 149 we
need to factor its first member, equate each factor to zero,
and solve the resulting equations. But when (B) is above
the second degree in «, the first member cannot be factored
by inspection except in certain special cases.

The methods which follow should be used when, and only
when, f(z) cannot be factored by inspection.

472. If a is a root of the equation f(x) =0, that is, if
f(a) =0, then f(x) is divisible by x—a (§ 131).
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Conversely, if f(x) is divisible by x — a, then f(a) = 0; that
i3, @ 18 a root of the equation f(x)=0.

E.g., if 2 is a root of the equation
22 —222—-42+4+8=0, )

then its first member is divisible by z — 2 (§ 132).
Conversely, if the first member of (1) is divisible by x — 2, then 2 is
a root of this equation.

473, It was proved in § 148 that » linear equations in z
are jointly equivalent to an equation of the nth degree in .

In proving the converse of this theorem in the next article
we assume the following theorem :

Any integral rational equation in one unknown has at least
one root, real, tmaginary, or complex.

Note. The proof of this theorem is too long and difficult to be
given here.

474, Any equation of-the nth degree in one unknown has n,
and only n, roots.

Proof. By § 473, the equation f(x) = 0 has a root.

Let a, denote this root; then, by § 472, f(x) is divisible
by @ — a,, so that

S@) = (=—a) fi(®), ™

in which, by the laws of division, f; () has the form of f(z),
and is of the (n — 1)th degree. '

Now the equation JSi(x) =0 has a root.

Denote this root by a,; then

f@) = (@ — a) f2(2), )

in which f;(x) is of the (n — 2)th degree.
Repeating this process » — 1 times, we finally obtain

Juar (@) = (z — a,) 4 (®)
where 4, is the coefficient of 2* in f().
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From (1), (2), -+, (n), we obtain

J@) = (2 — o) fi(2)
= (2 —a) (2 — a)) /3 (2)
=E@E—m)(@—a)(@—ay) - (@—a) 4y ®
Hence the equation f(z) = 0 is equivalent to the » linear
equations
' t—a=0, z—0a;=0, -, 2—0a,=0,
and therefore has n and only n roots.

" From (3), it follows that any expression of the nth degree
in & can be resolved into » linear factors in .

475. Equal roots. If two or more of the factors = — a,,
& — @y, -+, & — a, are equal, the equation f(z) =0 has two
or more equal roots.

E.g., of the equation
(z — )%=z + 6)*(z—7)=0,
three roots are 4 each, and two are — b each.

Ex. Onerootof 228 — 522 — 372 +4+60=01is 5. Find the others.
" One root being 5, one factor of f(x) is z — 5 (§ 472).

By division the other factor is found to be 222 + 5z — 12.

Hence the two roots required are those of the equation

243 4+62—12=0. @
The roots of (1) are evidently — 4 and 3/2.

Exercise 162.
Solve each of the following gquations:
1. 2*—642*4 10z — 8 = 0, one root being 4.
2. 3a® —252% 4 42 4 40 = 0, one root being 5.
i) 8. 22 42— 152 — 18 = 0, one root being — 2.
4. 32 —82'— 31z + 60 =0, one root being — 3.



THEORY OF EQUATIONS 449.

5. 42 — 92’ — 32+ 10 = 0, one root being — 1.
6. o4 2°— 292 — 9z + 180 =0, two roots being 3 and
-3
7. a* —42® —8x 4 32 =0, two roots being 2 and 4.
8. 2a*—152*+ 354" — 302 4+8=0, two roots being 1
and 2.
9. 32 —5a2— 1724132 4 6 =0, two roots being —
and 3. '
By § 148, form the equation whose roots are:
10. The two numbers, +V — 2.
11. The four numbers, +vV—3, +V—b.
12. The four numbers, 3 +V—7, 5, —2/3.
13. 3/4,1+V -3, 1+V =5
14. 2, V-1, 3+V-2.
15. 3, —4, V—2.

In each of the last six examples, observe that the coefficients of the
equation obtained are all real when, and only when, the imaginary or
complex roots occur in conjugate pairs. This illustrates the converse
of the next article.

476. In any integral rational equation having only real
coefficients, tmaginary or complex roots occur in conjugate
pairs; that is, if @ + bi 8 a root, then a — bi is also a root.

Proof. 1If the coefficients in f(x) are all real, then all-the
terms of the expression obtained by substituting a + b¢ for
z in f(x) will be real except those containing odd powers of
bi, which will be imaginary.

Representing the sum of all the real terms by 4, and the
sum of all the imaginary terms by Bi, we have

fla+bi)= A+ Bi. @
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Now f(a — bi) will evidently differ from f(a + b?) only in
the signs before the terms containing the odd powers of bi;
that is, in the sign before Bi; hence

S(@—b)=A—Bi. €))
Since a + bi is a root of f(«x) = 0, from (1) we have
A+ Bi=0. _
Therefore A=0 and B=0. § 279
Hence by (2), S(a—bi)=0.

That is, when a 4 bi is a root of Sf(@) =0, a—bi is also a
root.

Ex. Onerootofz3 —422442x—-8=0 @
is 1+Vv=3) /2; find the others.

Since 1/2 + V' — 3/2 is a root, 1/2 — V' — 3/2 is also a root (§ 476).
Hence two factors of the first member of (1) are

z—1/2—-V—3/2 and z—1/2 +V-3/2,
whose product is (x —1/2)2+ 3/4, or 22—z + 1.
But 2 —4224+4z—-3=@2—2+1)(z—8); )

hence the third root of (1) is 3.
Identity (2) illustrates the following principle :

4T7. Any rational integral function of x whose coefficients
are real can be resolved into real factors, linear or quadratic
in x.

Proof. 1If the coefficients of f(«) are real, the imaginary
or complex roots of f(x)=0 occur in conjugate pairs, as
a+ bi and a— bi; hence the complex factors of f(x) occur
in conjugate pairs, as x—a—bi and x— a+ bi, whose
product is a real gquadratic expression in #; that is

@E—a—b)(z—a+bi)=(z—a) + b
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Bxercise 163,

Solve each of the following equations, and find the real
factors of the first member:

1. 28— 62+ 572 —196 =0, one root being 1 — 4V — 3.

2. #*—62+9 =0, one root being (3 +V—3)/2.

3. 28 —2a’+ 22 —1=0, one root being (1 ++V — 3)/2.

4. * 4422+ 522+ 22— 2=0, one root being —1 4 1.

5. x‘+4a:’+6:v’+4a:+5 0, one root being ¢.

6. *—of+at—2*+2—1=0, two roots being —¢ and
A+V=3)/2.

7. Show that in an equation with commensurable real
coefficients, surd roots occur in conjuga.te pairs; that is, if
a +~/b is a root of f(x) =0, a —+/b is a root also, /b belng
a surd number.

All the terms in f(e + 1/b) will be ratiohal except those containing
odd powers of /b, which are surd. Denote the sum of all the rational
terms by 4 and the sum of all the surd terms by B/b; then

Sf(a+ vb)=A4+ Byb. :

Hence Sf(a—+/b)=A — B/b; and so0 on as in § 476.

8. Solve 6 a*—132®— 352 —2+43=0, one root being
2—V3. :

9. Solve #*— 36 2°4 72 & — 36 = 0, one root being 3 —/3.

478, The graph of f(x) illustrates the fact that equal real
roots form the connecting link between wnequal real roots
and imaginary or complex roots, and that imaginary or com-
plex roots occur in pairs.

E.g., by slightly diminishing the term 4 of the function 23—8 22+ 4,

its graph in fig. 4 of § 463 would be moved downward, and would
then cut the axis of z in three points; by slightly increasing the term
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4, the graph would be moved upward, and would then cut the axis of z
in but one point.
That is, the two equal real roots of the equation

28-3823+4=0

would become unequal real roots or complex roots according as the
known term 4 were diminished or increased. ’
From fig. 6 in § 463 the pupil should follow the changes in the
roots of the equation )
*428—-322—242=0,

(i) when the term 2 is decreased continuously to —1;
(ii) when the term 2 is increased continuously to 4.

479, An equation of the form (B) in § 470, is said to be
in the type-form when the coefficient of «" is 1.

Eg., x4 — 28 + § 22 + 4 = 0 is in the type-form.

480. If an equation of the nth degree is in the type-form, then
(— 1) (the coefficient of x"~) = the sum of the roots;

the coefficient of x"~* = the sum of the products of the
roots taken two at a time;

(— 1) (the coefficient of x*~%) = the sum of the productsof the
roots taken three at a tdme.

(— 1)" (the coefficient of x") = the product of the n roots.
Proof. Let ay, ag a --- a, denote the n roots; then, by
§ 148, the equation can be written in the form

@—a)@—a)@—a)-@—a)=0 ()
‘When n = 2, by multiplication (1) becomes
@ — (&, + ag)z + aa, =0,

which proves the theorem when n = 2.
‘When n = 3, by multiplication (1) becomes

@ — (01 + 03 + 09)2® + (0185 + 0103 + A903)T — )08, =0, (2)
which proves the theorem when n = 3.
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From the laws of multiplication it is evident that the
same relation holds when n =4, 5, 6, ...

Observe that, if the term in 2*~! is wanting, the sum of
the roots is 0, and if the known term is wanting, at least
one root is 0.

E.g., in the equation
#+6z2—-112—-6=0,

the sum of the roots is 0 ; the sum of their products taken two at a
time is 6 ; the sum of their products taken three at a time is 11 ; and
their product is — 6.

Note. The coefficients in any equation are functions of the roots;
and conversely, the roots are functions of the coefficients. The roots
of a literal quadratic equation have been expressed in terms of the
coefficients (§ 291). The roots of a literal cubic or biquadratic equa-
tion can also be expressed in terms of the coefficients, as is shown in
college algebra. But the roots of a literal equation of the fifth or
higher degree cannot be so expressed, as was proved by Abel in 1826.

Ex. Its roots being in arithmetic progression, solve

428 —-2422+232+18=0. 1)

Let a denote the second term in the A.P. and b the difference ;
then the three roots are a — b, a, a + b. Hence their sum is 3a;
the sum of their products taken two at a time is 3 a2 — b2; and their
product is a(a? — b?).

Divide (1) by 4 to reduce it to the type-form; then, by § 480,
" we have ‘

3a=6, 3a - =23/4, a(a®—b%)=—9/2. @)

Solving the first two equations in (2), we obtain ¢ =2, b=+ 5/2;
and these values are found to satisfy the third equation in (2).

Hence the roots are — 1/2, 2, and 9/2.

Exercise 164.
1. The sum of two of its roots being zero, solve
4224162 —-92—36=0.
The sum of the three roots is — 4 ; hence the third root is — 4.

2. Its roots being in arithmetic progression, solve
422 —-1222+352+5=0.
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8. Its roots being in geometric progressidn, solve
325 —262°+ 522 —24=0.

4. One root being 1 — vV — 3, solve
©®—4224+8x—8=0.

One root being 1 — Vv — 3, a second root is 1 + V- 3.

The sum of these two roots is 2, and the sum of the three roots
is 4 ; hence the third root is 2.

5. By § 480, solve each of the first five examples in
exercise 153. :

481. If the coefficients of f(x) are all +, f{z)> 0 when
2>0; hence, if the coefficients of f(x) are all positive, f(x)=0
has no positive real root.

If the coefficients of f(x) are alternately + and —; then,
when 2 <0, f(x)>0 or <0 according as n is even or odd;
hence, if the coefficients of f(x) are alternately + and —,
f(x) =0 has no negative real root.

If the sum of the coefficients of f(x) is zero, f(1)=0;
hence, when the sum of the coefficients of f(x) is zero, one root
of F(x)=01is + 1.

E.g., 2 + 62?4 112 + 6 = 0 has no positive root, since f(z)>0
when z > 0.

23 — 622 + 102z — 8 = 0 has no negative root ; since f(z)<<0 when

z<0.
2*+22% —1323 — 142 + 24 =0 has +1 as a root; since f(1)=0.

482, If all the coefficients of an equation in the type-form
are whole numbers, any commensurable real root of the
equation 18 an integral factor of its known term.

E.g., any commensurable real root of the equation
22 —622+102—-8=0
is an integral factor of its known term — 8; that is, any such root is

+1, +2, +4, or 4-8.
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Proof. Let all the coefficients of the equation
o4 At At o+ 4,=0 @
be whole numbers, and suppose that s/¢, a fractional num-
ber in its lowest terms, is one of its roots.
Substituting s/t for , we obtain
T A+ 4T+ 4,20,

tn -1 tn -2
Multiplying by "1, and transposing, we obtain
S ft=— (43" + Ats" 2 + o + A7) )
Now (2) is impossible, for its first member is a fractional
number in its lowest terms, and its second member is a
whole number:
Hence a fractional number cannot be a root, and there
fore any commensurable root must be a whole number.
Next, let a be an integral root of (1).
Substituting a for , transposing 4,, and dividing by a,
we have
a '+ A0+ Aot + 4, ,=—4,/a ®3)

The first member of (3) is a whole number; hence the
quotient A,/a is a whole number, ie., a is an integral
factor of A,.

Ex.1. Solve2? — 622+ 10z —8=0. (¢))

By § 481, (1) has no negative root ; hence, by § 482, any commen-
surable real root of (1) is + 1, + 2, + 4, or 4 8, i.e. it is one of the
positive integral factors of 8.

The work of determining whether + 4 is a root can be arranged
as below :

1 -6 +10 -84
+4 — 8 + 8
1 -2 + 2 0

The division is exact, and the quotient is 22 — 2 x 4 2.
Hence the roots of (1) are 4 and the roots of

—2242=0. . @



456 ELEMENTS OF ALGEBRA
Solving (2), z=1xV-1.
Hence the roots of (1) are4and 1 + V- 1.

Ex. 2. Solve o +22% — 1323 — 142 4 24 =0, e

By § 481, one root of (1) is + 1, and by § 482 any other commen-
surable real root is

:hl’ :hzi is’ i‘? :ke’ isi :hlz’ or 124’
{.e. it is one of the integral factors of 24.
1 +2 -18 -14 424(1

+1 + 8 —10 —24
1 +8 —-10 —24[-—2
-2 -2 424
1 +1 -—-12
Hence the roots of (1) are 1, — 2, and the rootz of
®»+2-12=0.

Hence the roots of (1) are 1, — 2, 3, and — 4.
Usually it is better to try the smaller factors of A4, first,

Bxercise 166.
Solve each of the following equations:

1. 2422 +92+18=0.

2. P*—622+112—6=0.

8. *—42>—6x+9=0.

4, -3+ 2*+22=0.

6. ©*—82*4+132—6=0.

6. *+4+62°4+924+2=0.

7. ?+b62—92x—-45=0.

8. ##—42°—82+432=0.

9. -6 4242—-16=0.

10. «*# —32®— 142+ 482 —32=0.
11, -8 —922 42122 —-102+24 =0.
12. 2 +4+22'—232—60=0.
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483, Limits of real roots. Superior limit. In evaluating
f(4) in example 1 of § 469, the sums are all positive, and
they evidently would all be greater for > 4.

Hence f(x) can vanish only for 2 < 4; and therefore all
the roots of f(x) =0 are less than 4.

Hence, if in computing the value of f(*¢) all the sums are
positive, the real roots of f(x) =0 are all less than *e.

The least integral value of *+¢ which fulfils this condition
is called the superior limit of the real roots of f(z)=0.

Inferior Wimit. In evaluating f(—5) in example 2 of
§ 469, the sums are alternately — and +, and they evidently
would all be greater arithmetically for # < — 5. Therefore
all the real roots of f(x) =0 are greater than — 5.

Hence, if in computing the value of £(~b) the sums are alter-
nately — and 4, all the real roots of f(x)=0 are greater
than —b. .

The greatest integral value of —b which fulfils this condi-
tion is called the inferior limit of the real roots of f(x)=0.

Observe that the above reasoning holds when we regard a.
zero sum as either positive or negative, and that when the
last sum is zero, the limit obtained is itself a root.

Eg.,if f@)=ot+22*—1322—142+24=0; ')

then in evaluating f(4), the sums are all +; and in evaluating f(— 6),
the sums are alternately — and +; hence the real roots of f(x)= 0 lie
between — 6 and 4.

Hence, by § 482, any commensurable roots of (1) must be

+1, +£2, +38, or — 4.
Compare this result with example 2 in § 482.

Exercise 166.
1. Show that any commensurable real root of
®—22—50=0
lies between — 2 and 4; and hence is +1 or 2.

.
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2. Show that any commensurable real root of
#—3a—T52—10000=0
is +1, +2, +4, +5, +8, or 10.
8. Show that any commensurable real root of
P15 +102+24=0 @)
is £1, +2, +3, or —4.
4. Find the roots of equation (1) in example 3.

Solve each of the following equations:

6. *—92®+172* 4272 —60=0.

#—452— 402484 =0.

@ —40—162°+1122% — 208 2+ 128 = 0.

o —2*— 392+ 2424180 =0.

2?45 —8lat— 8544964 2° + T80z — 1584 = 0.
10. &'+ o' — 142" — 1424 4 492° 49 2° — 36 2 = 36.
11. 2#—102*— 322 4+108 =0.

12. -2 —Ta* 4200 — 212 — 182 4+ 27 =0.

® ®» o

484, To transform an equation into another whose roots
shall be some multiple of those of the given one.

Proof. If in the equation
”+A1”_1+AW_’+AW+"'+A*=O’ (B)
we put # = 2, /a, and multiply by a", we obtain
2"+ A0+ A+ A0 4 e 4 4,07 =0, (2)
Since x, = az, the roots of (2) are a times those of Q).
Hence, to effect the required transformation, multiply the
second term of (B) by the given factor, the tlm'd term by its

square, and so on.
Observe that before the rule is applied the equation must
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be put in the type-form, and any missing power of 2 must
be written with zero as its coefficient,

This theorem becomes evident also when we observe that
if in equation (2) in'§ 480 each root is multiplied by a, the
second term will be multiplied by a, the third term by a?
and the fourth term by a®

The chief use of this transformation is to clear an equa-
tion of fractional coefficients.

Ex. Solve the equation

x’—-?z*+£x—{,;0, [¢))

first transforming it into another with integral coefficients,
Multiplying the second term by e, the third by a2, the fourth by a8,

we obtain
22— Yax?+ fa%e — Hat=0. 2)

By inspection we discover that 4 is the least value of ¢ which will
render the coefficients of (2) integral. Putting @ = 4, we obtain

28— 1122+ 362 — 36 =0. 3)

The roots of (3) are found to be 2, 3, and 6.
But the roots of (3) are four times the roots of (1); hence the roots
of (1) are 1/2, 3/4, and 3/2.

Exercise 157.

Solve the following equations by transforming them into
others whose commensurable real roots are whole numbers :

1L B#—42f— o+ =0.
?—o?/h—x/24+1/8=0.

848 — 262 + 112+ 10 =0.

o — /3 — /36 +1/108 = 0.

2425 — 520° + 26 — 3 =0.

924 — 928 +5a2 —32+2/3=0.

o — /6 —2?/12 —132/24 +1/4 =0.
244 — 1224+ 192 — 62+ 9 =0.

R L ol



460 ELEMENTS OF ALGEBRA

486. If f(a) and f(b) are opposite in quality, an odd number
of real roots of f(x) =0 lies between a and b.

If f(a) and f(b) are like in quality, no real root, or an even
number of real roots of fx) = 0 lies between a and b.

Proof. If the ordinates of two points in the graph of f{z)
are opposite in quality, the points are on opposite sides of
the z-axis, and the part of the graph between these points
must cross that axis an odd number of times (§ 466); that
is, f(z) is zero for an odd number of values of x between a
and b.

If the ordinates of two points are like in quality, the
points are on the same side of the z-axis, and the part of
the graph between these points either does not cross that
axis or crosses it an even number of times, touching it being
regarded as crossing it twice.

E.g., in fig. 3 of § 463, the graph cuts XX’ an odd number of
times between 4 and B or 4 and D, and an even number of times
between 4 and C or B and D.

In fig. 6 of § 463, the graph cuts XX’ an odd number of times
between 4 and B or B and E, and an even number of times between
Aand C, Cand E, or 4 and E.

Ex. Find the first figure of each real root of the equation

22—423-62x+8=0. (¢))
By §§ 474 and 476, (1) has either three or only one real root.
By Horner’s method we find that :
when z=-2 -1, 0, 1, 2, 8, 4, b,
flx)=—4, +9, +8, —1, —12, —19, —16, +8.
Since f(— 2) and f(— 1) are opposite in quality, at least one root
of (1) lies between — 2 and — 1. For like reason a second root lies
between 0 and 1, and a third between 4 and 6.

Hence two roots are —(1.-+) and 4.4, and, since f(0.9) is +
and f(1) is —, the third root is 0.9 +.
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486, Any equation of an odd degree in which A, is positive
kas at least. one real root whose quality is opposite to that of
ts known term A,.

Proof. If A,> 0 and f() is of an odd degree, then
S(—w) is —, f0) = A4,, f(+»)is +.
Hence if 4, is positive, one root of f(z) = 0 lies between

—o and 0 (§ 485); and if A, is negative, one root lies
between 0 and 0.

487, Any equation of an even degree in which A, is positive
and the known term A, is negative has at least one positive
and one negative real root. i

Proof. If Ay> 0 and f(z) is of an even degree, then

J(—o) is +, f0) is —, f{+o) is +.

Hence one root of f{w) =0 lies between — o0 and 0, and

another between 0 and +4o0.

Exercise 168.
Find the first figure of each real root of the equations:
1. ©—-322—42x+4+11=0. 5. @*—22—-5=0.
2. P+a*—22—-1=0. 6. ©*+2—500=0.
3. #*—422—-32+4+23=0. 7. 2*+ 102"+ 5z =260.
4. ©*—422—6x=—38. 8 #—12224122—-3=0
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An Academic Algebra.

By Professor J. M. TAYLOR, Colgate University, Hamilton, N.Y. 16mo,
cloth, 348 pages. Price, $1.00.

HIS book is adapted to beginners of any age and covers
sufficient ground for admission to any American college or
university. In it the fundamental laws of number, the literal
notation, and the method of solving and using the simpler
forms of equations, are made familiar before the idea of alge-
braic number is introduced. The theory of equivalent equa-
tions and systems of equations is fully and clearly presented.
Factoring is made fundamental in the study and solution of
equations. Fractions, ratios, 2nd exponents are concisely and
scientifically treated, and the theory of limits is briefly and
clearly presented.
Professor C. H. Judson, Furman University, Greenville, S.C.: 1 regard
this and his college treatise as among the very best books on the subject,

and shall take pleasure in commending the Academic Algebra to the
schools of this State,

Professor E. P. Thompson, Miami University, Oxford, O.: The book is
compact, well printed, presenting just the subjects needed in preparation
for college, ard in just about the right proportion, and simply presented.
1 like the treatment of the theory of limits, and think the student should
be introduced early to it. I am more pleased with the book the more
I examine it.

A Primary Algebra.

By ]J. W. MACDONALD, Agent of the Massachusetts Board of Educa-~
tion. 16mo, cloth. The Compleie Edition, 218 pages (containing the
Teacher's Guide, the Student's Manual, and Aunswers to Problems),
Price,75 cents. The Student’s Manual, cloth,92 pages. Price, 30 cents.
FOR grammar-school use this book covers the work of about
one year. In a high school or academy it can be finished
in less time. Itis published in two parts: 7#%e Teacker's Guide
and The Student's Manual. The former contains theory, expla-
nations, definitions, etc., the latter furnishes examples for class-
drill and for the student’s home work. The Manual is published
separately, and is the only part which the pupils will need.
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A College Algebra.

By Professor J. M. TAYLOR, Colgate University, Hamilton, N.Y.
16mo, cloth, 373 pages. Price, $1.50.
VIGOROUS and scientific method characterizes this book.
In it equations and systems of equations are treated as
such, and not as equalities simply. C
A strong feature is the clearness and conciseness in the state-
ment and proof of general principles, which are always followed
Ry illustrative examples. Only a few examples are contained in
the First Part, which is designed for reference or review. The
Second Part contains numerous and well selected examples.
Differentiation, and the subjects usually treated in university
algebras, are brought within such limits that they can be success-
- fully pursued in the time allowed in classical courses.
Each chapter is as nearly as possible completé in itself, so
that the order of their succession can be varied at the discretion
of the teachers.

Professor W. P. Durfee, Hobart College, Geneva, N.Y. : It seems to me a
logical and modern treatment of the subject. I have no hesitation in pro-
nouncing it, in my judgment, the best text-book on algebra published in
this country,

Professor George C. Edwards, University of California: It certainly is a
most excellent book, and is to be commended for its consistent conciseness
and clearness, together with the excellent quality of the mechanical work
and material used.

" Professor Thomas E. Boyce, Middlebury College, V2. : 1 have examined
with considerable care and interest Taylor's College Algebra, and can say
that I am much pleased with it, I like the author's concise presentation
of the subject, and the compact form of the work..

Professor H. M. Perkins, Okio Wesleyan University: 1 think it is an
excellent work, both as to the selection of subjects, and the clear and
concise method of treatment.

8. J. Brown, Formerly of University of Wisconsin: 1 am free to say that
it is an ideal work for el tary college cl . I like particularly the
introduction into pure algebra, elementary problems in Calculas, and ana-
Iytical growth, Of course, no book can replace the clear-sighted teacher;
for him, however, it is full of suggestion.
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Plane and Spherical Trigonometry.

By President ELMER A. LYMAN, Michigan State Normal College, and
Professor EDWIN C. GODDARD, University of Michigan. Cloth, 146
pages. Price, go cents.
THIS is the author’s well-known Plane Trigonometry com-
pleted by the addition of chapters of Miscellaneous Prob-
lems, Series, etc., and a short course in Spherical Trigonometry,
It is designed to fill the need of a text-book which shall furnish
sufficient material in analytical trigonometry, and also in the
solution of the triangle, both of which have been adequately met
heretofore by no single book.

Particular attention has also been given to the proofs of the
formula for the functions of a + 8. Nearly all other text-books
treat the same line as both positive and negative in the same
discussion, thus vitiating the proof, and in many cases proofs
are given for acute angles and are then supposed to be estab-
- lished without further discussion for all angles. These diffi-
culties have been avoided by so stating the proofs-that the
language applies to figures involving any angles, and proving
the general case algebraically to avoid drawing an indefinite
number of such figures.

J. E. Lehman, Ledanon Valley College, Annville, Pa.: The development
of (a£B) is new to me and surely very clever, The exercises are fresh
and well graded. On the whole, I like the book very much.

A. C. Russell, Kent's Hill, Me.: 1t is up to date, comprehensible, practical.

Marshall D. Earle, Furman University, Greenville, S.C.: 1 am very much
pleased with the book. The general arrangement is good and the exer-
cises well selected. The tables are very conveniently arrariged. I feel
quite sure the work will prove to be an excellent text-book.

Computation Tables.
By LYMAN and GODDARD. Price, 50 cents.

Plane and Spherical Trigonometry, with Com-
putation Tables.

By LYMAN and GODDARD. Complete edition. Cloth, 214 pages.
Price, $1.20.
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Calculus with Applicationg.

By ELLEN HAYES, Professor of Mathematics at Wellesley College,
12mo, cloth, 170 pages. Price, $1.20.
HIS book is a reading lesson in applied mathematics, intended
for persons who wish, without taking long courses in mathe-
matics, to know what the calculus is and how to use it, either as
applied to other sciences, or for purposes of general culture.
Nothing is included in the book that is not a means to this
end. All fancy exercises are avoided, and the preblems are for
the most part real ones from mechanics or astronomy.

Principles of Plane Geometry.

By J. W. MACDONALD, Agent of the Massachusetts Board of Educa-

tion. 16mo, paper, 70 pages. Price, 30 cents.

HIS book may be described as an excellent Geometry with-
out the demonstrations. Even the axjoms and the defini-

tions are given as questions. The pupil is expected to do a

great deal of thinking, and not much memorizing.

Public Opinion, Waskington, D.C.: It is time that teachers should see that
what they gain in greater ground covered by the old method, they lose in
power of mind on the part of pupils. Why is it that so many are going
out into the world as “scientific” workers? Because by the methods of
training, students in science are not obliged to make a fatal leap when they
go from training-schools into actual work. Mathematics would become
just as fascinating if the same methods were employed. The elementary
methods of teaching geometry must be improved in this direction before
the best results are reached. Mr. MacDonald speaks from a full expe-
rience and a demonstration in his own class-room of. the methods here
set forth. They are attracting wide attention. We know they will win
their way with scores of aspiring teachers.

Logarithmic and Other Mathematical Tables.
By WILLIAM J. HUSSEY, Professor of Astronomy in the Leland Stan-
ford Junior University, California. 8vo, cloth, 148 pages. Price, $1.00.
ARIOUS mechanical devices make this work specially easy to

consult; and the large, clear, open page enables one readily
to find the numbers sought. It commends itself at once to the
eye, as a piece of careful and successful book-making.
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Ancient History.

By Professor W. M. WEST, of the University of Minnesota. With

thirty-six maps and plans, and numerous illustrations. 12mo, half

leather, 606 pages. Price, $1.50.

HIS book is in complete harmony with the report of the
Committée of Seven of the National Historical Association.

It deals with the Eastern nations and with the Greeks, Romans,

and Teutons, the elements from which the modern world has

grown. Its aim is to show the continuity of history. Little space
is given to legends, or to anecdotes, or to wars; attention is
directed to the growth of society, to the development of institu-
tions, to the fusion of peoples.

The book is accepted as marking a new epoch in the study of

History in this country.

Professor C. W. A. Veditz, Bates College, Lewiston, Maine : 1 like the book
because it does not waste any time over the mere curiosities of history.
I like it because it puts wars into the background and institutions into the
foreground. I like it because it is well balanced ; because it breaks away
from traditions, where traditions have had nothing but age to recommend
them; because it omits the ephemeral and accidental incidents, and
emphasizes the lasting influences of ancient history; because it contains
frequent, well-chosen quotations from the best authorities, and thus
inspires a desire to read further.

Principal H. P. Warren, Albany Academy, Albany, N.Y.: 1 have read it
from cover to cover with critical interest. The book is remarkable for
breadth of scholarship and skill in treatment. How a man can cover so
much ground, and with proper emphasis, in 500 pages, is beyond my ken.
All facts relating to' a nation are always before him, and he marshals
them as a great general arranges a great army,

Professor George S. Goodspeed, University of Chicago, Chicago, ll.:
West's Ancient History is evidently the work of an experienced and skill-
ful teacher. My attention has been specially caught by the admirable
organization and selection of material, as well as by the skill and general
accuracy of presentation. It will occupy a high place among the text-
books of its class.

Professor D. M. Fisk, Waskburn College, Topeka, Kansas : West's Ancient
History is more than mere annals; it is the rarer thing — historical inter-
pretation, a chapter out of the evolution of human progress. Wisely
minimizing the details of battles, the personal chronicles of courts, it
emphasizes the broadly human, the economic, the social. Its abundance
of exquisite maps would by themselves win study.
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